-
Notifications
You must be signed in to change notification settings - Fork 6
/
config.py
251 lines (203 loc) · 7.38 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
from utils import resnet, wresnet, vgg, mobilenetv2
from utils import supervisor
from utils import tools
import torch
from torchvision import transforms
import os
data_dir = './data' # defaul clean dataset directory
triggers_dir = './triggers' # default triggers directory
target_class = {
'cifar10' : 0,
'gtsrb' : 2
}
# default target class (without loss of generality)
source_class = 1 # default source class for TaCT
cover_classes = [5,7] # default cover classes for TaCT
seed = 666 # 999, 999, 666 (1234, 5555, 777)
poison_seed = 0
record_poison_seed = False
record_model_arch = False
parser_choices = {
'dataset': ['gtsrb','cifar10', 'cifar100', 'imagenette'],
'poison_type': ['badnet', 'blend', 'adaptive_blend', 'adaptive_patch', 'adaptive_k_way', 'none'],
'poison_rate': [i / 1000.0 for i in range(0, 500)],
'cover_rate': [i / 1000.0 for i in range(0, 500)],
}
parser_default = {
'dataset': 'cifar10',
'poison_type': 'badnet',
'poison_rate': 0,
'cover_rate': 0,
'alpha': 0.2,
}
trigger_default = {
'adaptive_blend': 'hellokitty_32.png',
'adaptive_k_way': 'none',
'adaptive_patch': 'none',
'badnet' : 'badnet_patch.png',
'blend' : 'hellokitty_32.png',
'none' : 'none',
}
arch = {
'cifar10': resnet.resnet20,
# 'cifar10': vgg.vgg16_bn,
# 'cifar10': mobilenetv2.mobilenetv2,
'gtsrb' : resnet.resnet20,
'abl': wresnet.WideResNet
}
# adapitve-patch triggers for different datasets
adaptive_patch_train_trigger_names = {
'cifar10': [
'phoenix_corner_32.png',
'firefox_corner_32.png',
'badnet_patch4_32.png',
'trojan_square_32.png',
],
'gtsrb': [
'phoenix_corner_32.png',
'firefox_corner_32.png',
'badnet_patch4_32.png',
'trojan_square_32.png',
],
}
adaptive_patch_train_trigger_alphas = {
'cifar10': [
0.5,
0.2,
0.5,
0.3,
],
'gtsrb': [
0.5,
0.2,
0.5,
0.3,
],
}
adaptive_patch_test_trigger_names = {
'cifar10': [
'phoenix_corner2_32.png',
'badnet_patch4_32.png',
],
'gtsrb': [
'firefox_corner_32.png',
'trojan_square_32.png',
],
}
adaptive_patch_test_trigger_alphas = {
'cifar10': [
1,
1,
],
'gtsrb': [
1,
1,
],
}
def get_params(args):
if args.dataset == 'cifar10':
num_classes = 10
data_transform_normalize = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.4914, 0.4822, 0.4465], [0.247, 0.243, 0.261]),
])
data_transform_aug = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(15),
transforms.ToTensor(),
transforms.Normalize([0.4914, 0.4822, 0.4465], [0.247, 0.243, 0.261]),
])
lamb1 = 24.0
lamb2 = 24.0
lr_base = 0.1
lr_distillation = 0.01
lr_inference = 0.01
condensation_num = 2000
median_sample_rate = 0.1
weight_decay = 1e-4
elif args.dataset == 'gtsrb':
num_classes = 43
data_transform_normalize = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.3337, 0.3064, 0.3171), (0.2672, 0.2564, 0.2629))
])
data_transform_aug = transforms.Compose([
transforms.RandomRotation(15),
transforms.ToTensor(),
transforms.Normalize((0.3337, 0.3064, 0.3171), (0.2672, 0.2564, 0.2629))
])
# batch_id // 10 , with lamb = 4.0 => good ..
lamb1 = 14.0
lamb2 = 14.0
lr_base = 0.1
lr_distillation = 0.001
lr_inference = 0.001
condensation_num = 2000
median_sample_rate = 0.1
weight_decay = 1e-4
else:
raise NotImplementedError('<Unimplemented Dataset> %s' % args.dataset)
from utils import wide_resnet
params ={
'data_transform' : data_transform_normalize,
'data_transform_aug' : data_transform_aug,
'lamb_distillation' : lamb1,
'lamb_inference' : lamb2,
'lr_base' : lr_base,
'lr_distillation' : lr_distillation,
'lr_inference' : lr_inference,
'weight_decay' : weight_decay,
'condensation_num' : condensation_num, # number of samples extracted after distillation (samples with least losses will be extracted)
'median_sample_rate' : median_sample_rate, # rate of samples extracted from the sorted samples to approximate the clean statistics
'distillation_ratio' : [1/2, 1/4],
'num_classes' : num_classes,
'batch_size' : 128,
'pretrain_epochs' : 60,
'base_arch' : arch[args.dataset],
'inference_arch' : arch['low_dim'],
'inspection_set_dir' : supervisor.get_poison_set_dir(args)
}
return params
def get_dataset(inspection_set_dir, data_transform, args):
# Set Up Inspection Set (dataset that is to be inspected
inspection_set_img_dir = os.path.join(inspection_set_dir, 'data')
inspection_set_label_path = os.path.join(inspection_set_dir, 'labels')
inspection_set = tools.IMG_Dataset(data_dir=inspection_set_img_dir,
label_path=inspection_set_label_path, transforms=data_transform)
# Set Up Clean Set (the small clean split at hand for defense
clean_set_dir = os.path.join('clean_set', args.dataset, 'clean_split')
clean_set_img_dir = os.path.join(clean_set_dir, 'data')
clean_label_path = os.path.join(clean_set_dir, 'clean_labels')
clean_set = tools.IMG_Dataset(data_dir=clean_set_img_dir,
label_path=clean_label_path, transforms=data_transform)
return inspection_set, clean_set
def get_packet_for_debug(poison_set_dir, data_transform, batch_size, args):
# Set Up Test Set for Debug & Evaluation
test_set_dir = os.path.join('clean_set', args.dataset, 'test_split')
test_set_img_dir = os.path.join(test_set_dir, 'data')
test_set_label_path = os.path.join(test_set_dir, 'labels')
test_set = tools.IMG_Dataset(data_dir=test_set_img_dir,
label_path=test_set_label_path, transforms=data_transform)
kwargs = {'num_workers': 2, 'pin_memory': True}
test_set_loader = torch.utils.data.DataLoader(
test_set,
batch_size=batch_size, shuffle=True, **kwargs)
trigger_transform = data_transform
poison_transform = supervisor.get_poison_transform(poison_type=args.poison_type, dataset_name=args.dataset,
target_class=target_class[args.dataset],
trigger_transform=trigger_transform,
is_normalized_input=True,
alpha=args.alpha if args.test_alpha is None else args.test_alpha,
trigger_name=args.trigger, args=args)
poison_indices = torch.load(os.path.join(poison_set_dir, 'poison_indices'))
if args.poison_type == 'TaCT':
source_classes = [source_class]
else:
source_classes = None
debug_packet = {
'test_set_loader' : test_set_loader,
'poison_transform' : poison_transform,
'poison_indices' : poison_indices,
'source_classes' : source_classes
}
return debug_packet