-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathblend.py
76 lines (59 loc) · 2.52 KB
/
blend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import os
import torch
import random
from torchvision.utils import save_image
from config import poison_seed
class poison_generator():
def __init__(self, img_size, dataset, poison_rate, trigger, path, target_class = 0, alpha = 0.2):
self.img_size = img_size
self.dataset = dataset
self.poison_rate = poison_rate
self.trigger = trigger
self.path = path # path to save the dataset
self.target_class = target_class # by default : target_class = 0
self.alpha = alpha
# number of images
self.num_img = len(dataset)
def generate_poisoned_training_set(self):
torch.manual_seed(poison_seed)
random.seed(poison_seed)
# random sampling
id_set = list(range(0,self.num_img))
random.shuffle(id_set)
num_poison = int(self.num_img * self.poison_rate)
poison_indices = id_set[:num_poison]
poison_indices.sort() # increasing order
label_set = []
pt = 0
for i in range(self.num_img):
img, gt = self.dataset[i]
if pt < num_poison and poison_indices[pt] == i:
gt = self.target_class
img = (1 - self.alpha) * img + self.alpha * self.trigger
pt+=1
img_file_name = '%d.png' % i
img_file_path = os.path.join(self.path, img_file_name)
save_image(img, img_file_path)
#print('[Generate Poisoned Set] Save %s' % img_file_path)
label_set.append(gt)
label_set = torch.LongTensor(label_set)
return poison_indices, label_set
class poison_transform():
def __init__(self, img_size, trigger, target_class = 0, alpha = 0.2):
self.img_size = img_size
self.trigger = trigger
self.target_class = target_class # by default : target_class = 0
self.alpha = alpha
def transform(self, data, labels):
data = data.clone()
labels = labels.clone()
# transform clean samples to poison samples
labels[:] = self.target_class
data = (1 - self.alpha) * data + self.alpha * self.trigger
# debug
# from torchvision.utils import save_image
# from torchvision import transforms
# preprocess = transforms.Normalize([0.4914, 0.4822, 0.4465], [0.247, 0.243, 0.261])
# reverse_preprocess = transforms.Normalize([-0.4914/0.247, -0.4822/0.243, -0.4465/0.261], [1/0.247, 1/0.243, 1/0.261])
# save_image(reverse_preprocess(data)[-7], 'a.png')
return data, labels