forked from KalmanNet/KalmanNet_TSP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKalmanNet_nn.py
226 lines (175 loc) · 6.86 KB
/
KalmanNet_nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
"""# **Class: KalmanNet**"""
import torch
import torch.nn as nn
import torch.nn.functional as func
class KalmanNetNN(torch.nn.Module):
###################
### Constructor ###
###################
def __init__(self):
super().__init__()
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#############
### Build ###
#############
def Build(self, ssModel):
self.InitSystemDynamics(ssModel.F, ssModel.H)
# Number of neurons in the 1st hidden layer
H1_KNet = (ssModel.m + ssModel.n) * (10) * 8
# Number of neurons in the 2nd hidden layer
H2_KNet = (ssModel.m * ssModel.n) * 1 * (4)
self.InitKGainNet(H1_KNet, H2_KNet)
######################################
### Initialize Kalman Gain Network ###
######################################
def InitKGainNet(self, H1, H2):
# Input Dimensions
D_in = self.m + self.n # x(t-1), y(t)
# Output Dimensions
D_out = self.m * self.n # Kalman Gain
###################
### Input Layer ###
###################
# Linear Layer
self.KG_l1 = torch.nn.Linear(D_in, H1, bias=True)
# ReLU (Rectified Linear Unit) Activation Function
self.KG_relu1 = torch.nn.ReLU()
###########
### GRU ###
###########
# Input Dimension
self.input_dim = H1
# Hidden Dimension
self.hidden_dim = (self.m * self.m + self.n * self.n) * 10
# Number of Layers
self.n_layers = 1
# Batch Size
self.batch_size = 1
# Input Sequence Length
self.seq_len_input = 1
# Hidden Sequence Length
self.seq_len_hidden = self.n_layers
# batch_first = False
# dropout = 0.1 ;
# Initialize a Tensor for GRU Input
# self.GRU_in = torch.empty(self.seq_len_input, self.batch_size, self.input_dim)
# Initialize a Tensor for Hidden State
self.hn = torch.randn(self.seq_len_hidden, self.batch_size, self.hidden_dim).to(self.device,non_blocking = True)
# Iniatialize GRU Layer
self.rnn_GRU = nn.GRU(self.input_dim, self.hidden_dim, self.n_layers)
####################
### Hidden Layer ###
####################
self.KG_l2 = torch.nn.Linear(self.hidden_dim, H2, bias=True)
# ReLU (Rectified Linear Unit) Activation Function
self.KG_relu2 = torch.nn.ReLU()
####################
### Output Layer ###
####################
self.KG_l3 = torch.nn.Linear(H2, D_out, bias=True)
##################################
### Initialize System Dynamics ###
##################################
def InitSystemDynamics(self, F, H):
# Set State Evolution Matrix
self.F = F.to(self.device,non_blocking = True)
self.F_T = torch.transpose(F, 0, 1)
self.m = self.F.size()[0]
# Set Observation Matrix
self.H = H.to(self.device,non_blocking = True)
self.H_T = torch.transpose(H, 0, 1)
self.n = self.H.size()[0]
###########################
### Initialize Sequence ###
###########################
def InitSequence(self, M1_0):
self.m1x_prior = M1_0.to(self.device,non_blocking = True)
self.m1x_posterior = M1_0.to(self.device,non_blocking = True)
self.state_process_posterior_0 = M1_0.to(self.device,non_blocking = True)
######################
### Compute Priors ###
######################
def step_prior(self):
# Compute the 1-st moment of x based on model knowledge and without process noise
self.state_process_prior_0 = torch.matmul(self.F, self.state_process_posterior_0)
# Compute the 1-st moment of y based on model knowledge and without noise
self.obs_process_0 = torch.matmul(self.H, self.state_process_prior_0)
# Predict the 1-st moment of x
self.m1x_prev_prior = self.m1x_prior
self.m1x_prior = torch.matmul(self.F, self.m1x_posterior)
# Predict the 1-st moment of y
self.m1y = torch.matmul(self.H, self.m1x_prior)
##############################
### Kalman Gain Estimation ###
##############################
def step_KGain_est(self, y):
# Reshape and Normalize the difference in X prior
# Featture 4: x_t|t - x_t|t-1
#dm1x = self.m1x_prior - self.state_process_prior_0
dm1x = self.m1x_posterior - self.m1x_prev_prior
dm1x_reshape = torch.squeeze(dm1x)
dm1x_norm = func.normalize(dm1x_reshape, p=2, dim=0, eps=1e-12, out=None)
# Feature 2: yt - y_t+1|t
dm1y = y - torch.squeeze(self.m1y)
dm1y_norm = func.normalize(dm1y, p=2, dim=0, eps=1e-12, out=None)
# KGain Net Input
KGainNet_in = torch.cat([dm1y_norm, dm1x_norm], dim=0)
# Kalman Gain Network Step
KG = self.KGain_step(KGainNet_in)
# Reshape Kalman Gain to a Matrix
self.KGain = torch.reshape(KG, (self.m, self.n))
#######################
### Kalman Net Step ###
#######################
def KNet_step(self, y):
# Compute Priors
self.step_prior()
# Compute Kalman Gain
self.step_KGain_est(y)
# Innovation
y_obs = torch.unsqueeze(y, 1)
dy = y_obs - self.m1y
# Compute the 1-st posterior moment
INOV = torch.matmul(self.KGain, dy)
self.m1x_posterior = self.m1x_prior + INOV
# return
return torch.squeeze(self.m1x_posterior)
########################
### Kalman Gain Step ###
########################
def KGain_step(self, KGainNet_in):
###################
### Input Layer ###
###################
L1_out = self.KG_l1(KGainNet_in);
La1_out = self.KG_relu1(L1_out);
###########
### GRU ###
###########
GRU_in = torch.empty(self.seq_len_input, self.batch_size, self.input_dim).to(self.device,non_blocking = True)
GRU_in[0, 0, :] = La1_out
GRU_out, self.hn = self.rnn_GRU(GRU_in, self.hn)
GRU_out_reshape = torch.reshape(GRU_out, (1, self.hidden_dim))
####################
### Hidden Layer ###
####################
L2_out = self.KG_l2(GRU_out_reshape)
La2_out = self.KG_relu2(L2_out)
####################
### Output Layer ###
####################
L3_out = self.KG_l3(La2_out)
return L3_out
###############
### Forward ###
###############
def forward(self, yt):
yt = yt.to(self.device,non_blocking = True)
return self.KNet_step(yt)
#########################
### Init Hidden State ###
#########################
def init_hidden(self):
weight = next(self.parameters()).data
hidden = weight.new(self.n_layers, self.batch_size, self.hidden_dim).zero_()
self.hn = hidden.data