forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
assignment_groups_mip.cc
237 lines (217 loc) · 6.91 KB
/
assignment_groups_mip.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
// Copyright 2010-2022 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// [START program]
// Solve a simple assignment problem.
// [START import]
#include <cstdint>
#include <memory>
#include <numeric>
#include <utility>
#include <vector>
#include "absl/strings/str_format.h"
#include "ortools/base/logging.h"
#include "ortools/linear_solver/linear_solver.h"
// [END import]
namespace operations_research {
void AssignmentTeamsMip() {
// Data
// [START data]
const std::vector<std::vector<int64_t>> costs = {{
{{90, 76, 75, 70, 50, 74}},
{{35, 85, 55, 65, 48, 101}},
{{125, 95, 90, 105, 59, 120}},
{{45, 110, 95, 115, 104, 83}},
{{60, 105, 80, 75, 59, 62}},
{{45, 65, 110, 95, 47, 31}},
{{38, 51, 107, 41, 69, 99}},
{{47, 85, 57, 71, 92, 77}},
{{39, 63, 97, 49, 118, 56}},
{{47, 101, 71, 60, 88, 109}},
{{17, 39, 103, 64, 61, 92}},
{{101, 45, 83, 59, 92, 27}},
}};
const int num_workers = costs.size();
std::vector<int> all_workers(num_workers);
std::iota(all_workers.begin(), all_workers.end(), 0);
const int num_tasks = costs[0].size();
std::vector<int> all_tasks(num_tasks);
std::iota(all_tasks.begin(), all_tasks.end(), 0);
// [END data]
// Allowed groups of workers:
// [START allowed_groups]
using WorkerIndex = int;
using Binome = std::pair<WorkerIndex, WorkerIndex>;
using AllowedBinomes = std::vector<Binome>;
const AllowedBinomes group1 = {{
// group of worker 0-3
{2, 3},
{1, 3},
{1, 2},
{0, 1},
{0, 2},
}};
const AllowedBinomes group2 = {{
// group of worker 4-7
{6, 7},
{5, 7},
{5, 6},
{4, 5},
{4, 7},
}};
const AllowedBinomes group3 = {{
// group of worker 8-11
{10, 11},
{9, 11},
{9, 10},
{8, 10},
{8, 11},
}};
// [END allowed_groups]
// Solver
// [START solver]
// Create the mip solver with the SCIP backend.
std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP"));
if (!solver) {
LOG(WARNING) << "SCIP solver unavailable.";
return;
}
// [END solver]
// Variables
// [START variables]
// x[i][j] is an array of 0-1 variables, which will be 1
// if worker i is assigned to task j.
std::vector<std::vector<const MPVariable*>> x(
num_workers, std::vector<const MPVariable*>(num_tasks));
for (int worker : all_workers) {
for (int task : all_tasks) {
x[worker][task] =
solver->MakeBoolVar(absl::StrFormat("x[%d,%d]", worker, task));
}
}
// [END variables]
// Constraints
// [START constraints]
// Each worker is assigned to at most one task.
for (int worker : all_workers) {
LinearExpr worker_sum;
for (int task : all_tasks) {
worker_sum += x[worker][task];
}
solver->MakeRowConstraint(worker_sum <= 1.0);
}
// Each task is assigned to exactly one worker.
for (int task : all_tasks) {
LinearExpr task_sum;
for (int worker : all_workers) {
task_sum += x[worker][task];
}
solver->MakeRowConstraint(task_sum == 1.0);
}
// [END constraints]
// [START assignments]
// Create variables for each worker, indicating whether they work on some
// task.
std::vector<const MPVariable*> work(num_workers);
for (int worker : all_workers) {
work[worker] = solver->MakeBoolVar(absl::StrFormat("work[%d]", worker));
}
for (int worker : all_workers) {
LinearExpr task_sum;
for (int task : all_tasks) {
task_sum += x[worker][task];
}
solver->MakeRowConstraint(work[worker] == task_sum);
}
// Group1
{
MPConstraint* g1 = solver->MakeRowConstraint(1, 1);
for (int i = 0; i < group1.size(); ++i) {
// a*b can be transformed into 0 <= a + b - 2*p <= 1 with p in [0,1]
// p is true if a AND b, false otherwise
MPConstraint* tmp = solver->MakeRowConstraint(0, 1);
tmp->SetCoefficient(work[group1[i].first], 1);
tmp->SetCoefficient(work[group1[i].second], 1);
MPVariable* p = solver->MakeBoolVar(absl::StrFormat("g1_p%d", i));
tmp->SetCoefficient(p, -2);
g1->SetCoefficient(p, 1);
}
}
// Group2
{
MPConstraint* g2 = solver->MakeRowConstraint(1, 1);
for (int i = 0; i < group2.size(); ++i) {
// a*b can be transformed into 0 <= a + b - 2*p <= 1 with p in [0,1]
// p is true if a AND b, false otherwise
MPConstraint* tmp = solver->MakeRowConstraint(0, 1);
tmp->SetCoefficient(work[group2[i].first], 1);
tmp->SetCoefficient(work[group2[i].second], 1);
MPVariable* p = solver->MakeBoolVar(absl::StrFormat("g2_p%d", i));
tmp->SetCoefficient(p, -2);
g2->SetCoefficient(p, 1);
}
}
// Group3
{
MPConstraint* g3 = solver->MakeRowConstraint(1, 1);
for (int i = 0; i < group3.size(); ++i) {
// a*b can be transformed into 0 <= a + b - 2*p <= 1 with p in [0,1]
// p is true if a AND b, false otherwise
MPConstraint* tmp = solver->MakeRowConstraint(0, 1);
tmp->SetCoefficient(work[group3[i].first], 1);
tmp->SetCoefficient(work[group3[i].second], 1);
MPVariable* p = solver->MakeBoolVar(absl::StrFormat("g3_p%d", i));
tmp->SetCoefficient(p, -2);
g3->SetCoefficient(p, 1);
}
}
// [END assignments]
// Objective.
// [START objective]
MPObjective* const objective = solver->MutableObjective();
for (int worker : all_workers) {
for (int task : all_tasks) {
objective->SetCoefficient(x[worker][task], costs[worker][task]);
}
}
objective->SetMinimization();
// [END objective]
// Solve
// [START solve]
const MPSolver::ResultStatus result_status = solver->Solve();
// [END solve]
// Print solution.
// [START print_solution]
// Check that the problem has a feasible solution.
if (result_status != MPSolver::OPTIMAL &&
result_status != MPSolver::FEASIBLE) {
LOG(FATAL) << "No solution found.";
}
LOG(INFO) << "Total cost = " << objective->Value() << "\n\n";
for (int worker : all_workers) {
for (int task : all_tasks) {
// Test if x[i][j] is 0 or 1 (with tolerance for floating point
// arithmetic).
if (x[worker][task]->solution_value() > 0.5) {
LOG(INFO) << "Worker " << worker << " assigned to task " << task
<< ". Cost: " << costs[worker][task];
}
}
}
// [END print_solution]
}
} // namespace operations_research
int main(int argc, char** argv) {
operations_research::AssignmentTeamsMip();
return EXIT_SUCCESS;
}
// [END program]