-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathconfig.yaml
151 lines (127 loc) · 4.48 KB
/
config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
data:
image_list:
background_color: [1.0, 1.0, 1.0]
cond_width: 252 # multiply of 14
cond_height: 252
relative_pose: true
num_workers: 16
eval_batch_size: 1
eval_height: 512
eval_width: 512
system:
camera_embedder_cls: tgs.models.networks.MLP
camera_embedder:
dim_in: 25 # c2w + [fx, fy, cx, cy]
dim_out: 768
n_neurons: 768
n_hidden_layers: 1
activation: silu
image_feature:
out_dim: 773
image_tokenizer_cls: tgs.models.tokenizers.image.DINOV2SingleImageTokenizer
image_tokenizer:
pretrained_model_name_or_path: "facebook/dinov2-base"
width: ${data.cond_width}
height: ${data.cond_height}
modulation: true
modulation_zero_init: true
modulation_single_layer: true
modulation_cond_dim: ${system.camera_embedder.dim_out} # c2w + intrinsic
freeze_backbone_params: false
enable_memory_efficient_attention: ${system.backbone.enable_memory_efficient_attention}
enable_gradient_checkpointing: ${system.backbone.gradient_checkpointing}
tokenizer_cls: tgs.models.tokenizers.triplane.TriplaneLearnablePositionalEmbedding
tokenizer:
plane_size: 32
num_channels: 512
backbone_cls: tgs.models.transformers.Transformer1D
backbone:
in_channels: ${system.tokenizer.num_channels}
num_attention_heads: 8
attention_head_dim: 64
num_layers: 10
cross_attention_dim: 768 # hard-code, =DINO feature dim
norm_type: "layer_norm"
enable_memory_efficient_attention: false
gradient_checkpointing: false
post_processor_cls: tgs.models.networks.TriplaneUpsampleNetwork
post_processor:
in_channels: ${system.tokenizer.num_channels}
out_channels: 80
pointcloud_generator_cls: tgs.models.pointclouds.simplepoint.SimplePointGenerator
pointcloud_generator:
camera_embedder_cls: tgs.models.networks.MLP
camera_embedder:
dim_in: 25 # c2w + [fx, fy, cx, cy]
dim_out: 768
n_neurons: 768
n_hidden_layers: 1
activation: silu
image_tokenizer_cls: tgs.models.tokenizers.image.DINOV2SingleImageTokenizer
image_tokenizer:
pretrained_model_name_or_path: "facebook/dinov2-base"
width: ${data.cond_width}
height: ${data.cond_height}
modulation: true
modulation_zero_init: true
modulation_single_layer: true
modulation_cond_dim: ${system.camera_embedder.dim_out} # c2w + intrinsic
freeze_backbone_params: true
enable_memory_efficient_attention: ${system.backbone.enable_memory_efficient_attention}
enable_gradient_checkpointing: false
tokenizer_cls: tgs.models.tokenizers.point.PointLearnablePositionalEmbedding
tokenizer:
num_pcl: 2048
num_channels: 512
backbone_cls: tgs.models.transformers.Transformer1D
backbone:
in_channels: ${system.pointcloud_generator.tokenizer.num_channels}
num_attention_heads: 8
attention_head_dim: 64
num_layers: 10
cross_attention_dim: 768 # hard-code, =DINO feature dim
norm_type: "layer_norm"
enable_memory_efficient_attention: ${system.backbone.enable_memory_efficient_attention}
gradient_checkpointing: ${system.backbone.gradient_checkpointing}
post_processor_cls: tgs.models.networks.PointOutLayer
post_processor:
in_channels: 512
out_channels: 3
pointcloud_upsampling_cls: tgs.models.snowflake.model_spdpp.SnowflakeModelSPDPP
pointcloud_upsampling:
input_channels: 768
dim_feat: 128
num_p0: 2048
radius: 1
bounding: true
use_fps: true
up_factors: [2,4]
token_type: "image_token"
pointcloud_encoder_cls: tgs.models.pointclouds.pointnet.LocalPoolPointnet
pointcloud_encoder:
input_channels: 776 # 3 + 3 + 768 + 1 + 1 [xyz, local features]
c_dim: ${system.tokenizer.num_channels}
hidden_dim: 128
plane_size: ${system.tokenizer.plane_size}
n_blocks: 5
radius: ${system.renderer.radius}
renderer_cls: tgs.models.renderer.GS3DRenderer
renderer:
sh_degree: 3
radius: 0.6
mlp_network_config:
n_neurons: ${system.renderer.gs_out.in_channels}
n_hidden_layers: 2
activation: silu
gs_out:
in_channels: 128
xyz_offset: true
restrict_offset: true
use_rgb: false
feature_channels:
xyz: 3
scaling: 3
rotation: 4
opacity: 1
shs: ${shsdim:${system.renderer.sh_degree}}
clip_scaling: 0.2