forked from tofis/human4d_dataset
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathh4d_rgbd_visualization.py
41 lines (31 loc) · 1.51 KB
/
h4d_rgbd_visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import os
import numpy
import cv2
from importers import readpgm
from visualization import turbo_colormap
# sequence root folder, including color and depth subfolders with RGBD data
root = 'E:/Datasets/HUMAN4D/S1/19-07-12-07-32-22/Dump'
out = os.path.join(root, 'out')
if (not os.path.exists(out)):
os.makedirs(out)
colorz = os.listdir(os.path.join(root, 'color'))
depthz = os.listdir(os.path.join(root, 'depth'))
assert len(colorz) == len(depthz)
for i in range(len(depthz)):
# depth values in 100um are converted to mm by diving by 10.0
depth_img = readpgm(os.path.join(root, 'depth', depthz[i])).astype(numpy.float) / 10.0
# normalization
depth_img /= numpy.max(depth_img)
depth_img = (depth_img * 255).astype(numpy.uint8)
colored_depth_img = numpy.zeros([depth_img.shape[0], depth_img.shape[1], 3], dtype=numpy.float32)
# turbo colormap visualization
for x in range(colored_depth_img.shape[1]):
for y in range(colored_depth_img.shape[0]):
colored_depth_img[y, x] = turbo_colormap.turbo_colormap_data[depth_img[y, x]]
colored_depth_img = (colored_depth_img * 255).astype(numpy.uint8)
# rotate to show the image properly due to vertical orientation
cv2.imshow("depth", cv2.rotate(colored_depth_img, cv2.ROTATE_90_CLOCKWISE))
color_img = cv2.imread(os.path.join(root, 'color', colorz[i]))
# rotate to show the image properly due to vertical orientation
cv2.imshow("color", cv2.rotate(color_img, cv2.ROTATE_90_CLOCKWISE))
cv2.waitKey(1)