-
Notifications
You must be signed in to change notification settings - Fork 4
/
datasets.py
368 lines (308 loc) · 12.7 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
# Copyright 2022 - VDIGPKU
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import torch
import json
import torchvision
import numpy as np
import skimage.io
from PIL import Image
from tqdm import tqdm
from torchvision import transforms as pth_transforms
# Image transformation applied to all images
transform = pth_transforms.Compose(
[
pth_transforms.ToTensor(),
pth_transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
]
)
class ImageDataset:
def __init__(self, image_path):
self.image_path = image_path
self.name = image_path.split("/")[-1]
# Read the image
with open(image_path, "rb") as f:
img = Image.open(f)
img = img.convert("RGB")
# Build a dataloader
img = transform(img)
self.dataloader = [[img, image_path]]
def get_image_name(self, *args, **kwargs):
return self.image_path.split("/")[-1].split(".")[0]
def load_image(self, *args, **kwargs):
return skimage.io.imread(self.image_path)
class Dataset:
def __init__(self, dataset_name, dataset_set, remove_hards):
"""
Build the dataloader
"""
self.dataset_name = dataset_name
self.set = dataset_set
if dataset_name == "VOC07":
# self.root_path = "datasets/VOC2007"
self.root_path = "datasets/"
self.year = "2007"
elif dataset_name == "VOC12":
# self.root_path = "datasets/VOC2012"
self.root_path = "datasets/"
self.year = "2012"
elif dataset_name == "COCO20k":
self.year = "2014"
self.root_path = f"datasets/COCO/images/{dataset_set}{self.year}"
self.sel20k = 'datasets/coco_20k_filenames.txt'
# JSON file constructed based on COCO train2014 gt
self.all_annfile = "datasets/COCO/annotations/instances_train2014.json"
self.annfile = "datasets/instances_train2014_sel20k.json"
if not os.path.exists(self.annfile):
select_coco_20k(self.sel20k, self.all_annfile)
else:
raise ValueError("Unknown dataset.")
if not os.path.exists(self.root_path):
raise ValueError("Please follow the README to setup the datasets.")
self.name = f"{self.dataset_name}_{self.set}"
# Build the dataloader
if "VOC" in dataset_name:
self.dataloader = torchvision.datasets.VOCDetection(
self.root_path,
year=self.year,
image_set=self.set,
transform=transform,
download=False,
)
elif "COCO20k" == dataset_name:
self.dataloader = torchvision.datasets.CocoDetection(
self.root_path, annFile=self.annfile, transform=transform
)
else:
raise ValueError("Unknown dataset.")
# Set hards images that are not included
self.remove_hards = remove_hards
self.hards = []
if remove_hards:
self.name += f"-nohards"
self.hards = self.get_hards()
print(f"Nb images discarded {len(self.hards)}")
def load_image(self, im_name):
"""
Load the image corresponding to the im_name
"""
if "VOC" in self.dataset_name:
image = skimage.io.imread(f"/datasets_local/VOC{self.year}/JPEGImages/{im_name}")
elif "COCO" in self.dataset_name:
im_path = self.path_20k[self.sel_20k.index(im_name)]
image = skimage.io.imread(f"/datasets_local/COCO/images/{im_path}")
else:
raise ValueError("Unkown dataset.")
return image
def get_image_name(self, inp):
"""
Return the image name
"""
if "VOC" in self.dataset_name:
im_name = inp["annotation"]["filename"]
elif "COCO" in self.dataset_name:
im_name = str(inp[0]["image_id"])
return im_name
def extract_gt(self, targets, im_name):
if "VOC" in self.dataset_name:
return extract_gt_VOC(targets, remove_hards=self.remove_hards)
elif "COCO" in self.dataset_name:
return extract_gt_COCO(targets, remove_iscrowd=True)
else:
raise ValueError("Unknown dataset")
def extract_classes(self):
if "VOC" in self.dataset_name:
cls_path = f"classes_{self.set}_{self.year}.txt"
elif "COCO" in self.dataset_name:
cls_path = f"classes_{self.dataset}_{self.set}_{self.year}.txt"
# Load if exists
if os.path.exists(cls_path):
all_classes = []
with open(cls_path, "r") as f:
for line in f:
all_classes.append(line.strip())
else:
print("Extract all classes from the dataset")
if "VOC" in self.dataset_name:
all_classes = self.extract_classes_VOC()
elif "COCO" in self.dataset_name:
all_classes = self.extract_classes_COCO()
with open(cls_path, "w") as f:
for s in all_classes:
f.write(str(s) + "\n")
return all_classes
def extract_classes_VOC(self):
all_classes = []
for im_id, inp in enumerate(tqdm(self.dataloader)):
objects = inp[1]["annotation"]["object"]
for o in range(len(objects)):
if objects[o]["name"] not in all_classes:
all_classes.append(objects[o]["name"])
return all_classes
def extract_classes_COCO(self):
all_classes = []
for im_id, inp in enumerate(tqdm(self.dataloader)):
objects = inp[1]
for o in range(len(objects)):
if objects[o]["category_id"] not in all_classes:
all_classes.append(objects[o]["category_id"])
return all_classes
def get_hards(self):
hard_path = "datasets/hard_%s_%s_%s.txt" % (self.dataset_name, self.set, self.year)
if os.path.exists(hard_path):
hards = []
with open(hard_path, "r") as f:
for line in f:
hards.append(int(line.strip()))
else:
print("Discover hard images that should be discarded")
if "VOC" in self.dataset_name:
# set the hards
hards = discard_hard_voc(self.dataloader)
with open(hard_path, "w") as f:
for s in hards:
f.write(str(s) + "\n")
return hards
def discard_hard_voc(dataloader):
hards = []
for im_id, inp in enumerate(tqdm(dataloader)):
objects = inp[1]["annotation"]["object"]
nb_obj = len(objects)
hard = np.zeros(nb_obj)
for i, o in enumerate(range(nb_obj)):
hard[i] = (
1
if (objects[o]["truncated"] == "1" or objects[o]["difficult"] == "1")
else 0
)
# all images with only truncated or difficult objects
if np.sum(hard) == nb_obj:
hards.append(im_id)
return hards
def extract_gt_COCO(targets, remove_iscrowd=True):
objects = targets
nb_obj = len(objects)
gt_bbxs = []
gt_clss = []
for o in range(nb_obj):
# Remove iscrowd boxes
if remove_iscrowd and objects[o]["iscrowd"] == 1:
continue
gt_cls = objects[o]["category_id"]
gt_clss.append(gt_cls)
bbx = objects[o]["bbox"]
x1y1x2y2 = [bbx[0], bbx[1], bbx[0] + bbx[2], bbx[1] + bbx[3]]
x1y1x2y2 = [int(round(x)) for x in x1y1x2y2]
gt_bbxs.append(x1y1x2y2)
return np.asarray(gt_bbxs), gt_clss
def extract_gt_VOC(targets, remove_hards=False):
objects = targets["annotation"]["object"]
nb_obj = len(objects)
gt_bbxs = []
gt_clss = []
for o in range(nb_obj):
if remove_hards and (
objects[o]["truncated"] == "1" or objects[o]["difficult"] == "1"
):
continue
gt_cls = objects[o]["name"]
gt_clss.append(gt_cls)
obj = objects[o]["bndbox"]
x1y1x2y2 = [
int(obj["xmin"]),
int(obj["ymin"]),
int(obj["xmax"]),
int(obj["ymax"]),
]
# Original annotations are integers in the range [1, W or H]
# Assuming they mean 1-based pixel indices (inclusive),
# a box with annotation (xmin=1, xmax=W) covers the whole image.
# In coordinate space this is represented by (xmin=0, xmax=W)
x1y1x2y2[0] -= 1
x1y1x2y2[1] -= 1
gt_bbxs.append(x1y1x2y2)
return np.asarray(gt_bbxs), gt_clss
def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
# https://github.com/ultralytics/yolov5/blob/develop/utils/general.py
# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
box2 = box2.T
# Get the coordinates of bounding boxes
if x1y1x2y2: # x1, y1, x2, y2 = box1
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
else: # transform from xywh to xyxy
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
# Intersection area
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * (
torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)
).clamp(0)
# Union Area
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
union = w1 * h1 + w2 * h2 - inter + eps
iou = inter / union
if GIoU or DIoU or CIoU:
cw = torch.max(b1_x2, b2_x2) - torch.min(
b1_x1, b2_x1
) # convex (smallest enclosing box) width
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
rho2 = (
(b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2
+ (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2
) / 4 # center distance squared
if DIoU:
return iou - rho2 / c2 # DIoU
elif (
CIoU
): # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
v = (4 / math.pi ** 2) * torch.pow(
torch.atan(w2 / h2) - torch.atan(w1 / h1), 2
)
with torch.no_grad():
alpha = v / (v - iou + (1 + eps))
return iou - (rho2 / c2 + v * alpha) # CIoU
else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
c_area = cw * ch + eps # convex area
return iou - (c_area - union) / c_area # GIoU
else:
return iou # IoU
def select_coco_20k(sel_file, all_annotations_file):
print('Building COCO 20k dataset.')
# load all annotations
with open(all_annotations_file, "r") as f:
train2014 = json.load(f)
# load selected images
with open(sel_file, "r") as f:
sel_20k = f.readlines()
sel_20k = [s.replace("\n", "") for s in sel_20k]
im20k = [str(int(s.split("_")[-1].split(".")[0])) for s in sel_20k]
new_anno = []
new_images = []
for i in tqdm(im20k):
new_anno.extend(
[a for a in train2014["annotations"] if a["image_id"] == int(i)]
)
new_images.extend([a for a in train2014["images"] if a["id"] == int(i)])
train2014_20k = {}
train2014_20k["images"] = new_images
train2014_20k["annotations"] = new_anno
train2014_20k["categories"] = train2014["categories"]
with open("datasets/instances_train2014_sel20k.json", "w") as outfile:
json.dump(train2014_20k, outfile)
print('Done.')