-
Notifications
You must be signed in to change notification settings - Fork 3
/
new_test_reverse_trigger.py
283 lines (216 loc) · 8.96 KB
/
new_test_reverse_trigger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import copy
import os
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
unloader = transforms.ToPILImage()
def tanh_func(x):
return x.tanh().add(1).mul(0.5)
def indent_str(s_: str, indent: int = 0) -> str:
# modified from torch.nn.modules._addindent
if indent == 0:
return s_
tail = ''
s_ = str(s_)
if s_[-1] == '\n':
s_ = s_[:-1]
tail = '\n'
s = str(s_).split('\n')
s = [(indent * ' ') + line for line in s]
s = '\n'.join(s)
s += tail
return s
def prints(*args: str, indent: int = 0, prefix: str = '', **kwargs):
assert indent >= 0
new_args = []
for arg in args:
new_args.append(indent_str(arg, indent=indent))
new_args[0] = prefix + str(new_args[0])
print(*new_args, **kwargs)
def smooth(x, shape):
re_1 = torch.pow(x[:, :shape[1] - 1] - x[:, 1:], 2)
re_2 = torch.pow(x[:shape[0] - 1, :] - x[1:, :], 2)
return re_1.norm(p=1) + re_2.norm(p=1)
class AverageMeter:
"""Computes and stores the average and current value"""
def __init__(self, name: str, fmt: str = ':f'):
self.name: str = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0.
self.avg = 0.
self.sum = 0.
self.count = 0
def update(self, val: float, n: int = 1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
def remask_tabor(dir, model, dataloader, test_dataloader, target_label,
cost_multiplier_down=1.5 ** 1.5, attack_succ_threshold=0.99, cost_multiplier_up=1.5,
img_shape=(3, 32, 32), init_cost=None,
epoch=100, patience=5, lr=0.1, beta_1=0.5, beta_2=0.9, random_noise=False):
if init_cost is None:
init_cost = [1e-3, 1e-5, 2e-3, 1e-4, 1]
if not os.path.isdir(dir):
os.makedirs(dir)
criterion = nn.CrossEntropyLoss()
atanh_mark = torch.randn(img_shape, device='cuda')
atanh_mark.requires_grad_()
atanh_mask = torch.randn(img_shape[1:], device='cuda')
atanh_mask.requires_grad_()
mask = tanh_func(atanh_mask)
mark = tanh_func(atanh_mark)
optimizer = optim.Adam(
[atanh_mark, atanh_mask], lr=lr, betas=(beta_1, beta_2)
)
optimizer.zero_grad()
cost = torch.tensor(init_cost).cuda()
cost_up_counter = 0
cost_down_counter = 0
# best optimization results
mask_best = None
mark_best = None
losses = AverageMeter('Loss', ':.4e')
acces = AverageMeter('Acc', ':6.2f')
for _epoch in range(epoch):
losses.reset()
acces.reset()
# adjust_learning_rate(optimizer, _epoch, lr_schedule, lr_factor)
for idx, (_input, _label) in enumerate(dataloader):
_input = _input.type(torch.FloatTensor)
if random_noise:
_input = torch.randn_like(_input)
_input = _input.cuda()
_label = _label.cuda()
batch_size = _label.size(0)
X = _input + mask * (mark - _input)
Y = target_label * torch.ones_like(_label, dtype=torch.long).cuda()
predict = model(X)
loss_model = criterion(predict, Y)
acc = Y.eq(predict.argmax(1)).float().mean()
acces.update(acc.item(), batch_size)
losses.update(loss_model.item(), batch_size)
# R1: overly large triggers
mask_norm_1 = mask.norm(p=1)
mask_norm_2 = torch.pow(mask.norm(p=2), 2)
pattern = (torch.ones_like(mask) - mask) * mark
pattern_norm_1 = pattern.norm(p=1)
pattern_norm_2 = torch.pow(pattern.norm(p=2), 2)
mask_r1 = mask_norm_1 + mask_norm_2
pattern_r1 = pattern_norm_1 + pattern_norm_2
# R2: scattered triggers
mask_r2 = smooth(mask, img_shape[1:])
pattern_r2 = torch.tensor(0, dtype=torch.float).cuda()
for ch in range(img_shape[0]):
pattern_r2 += smooth(pattern[ch, ...], img_shape[1:])
# R4: Overlaying triggers
X_crop = mask * mark
X_crop = X_crop.unsqueeze(dim=0)
_output_3 = model(X_crop)
Y_temp = torch.tensor(target_label).unsqueeze(dim=0).cuda()
r4 = criterion(_output_3, Y_temp)
loss_vec = torch.stack([mask_r1, pattern_r1, mask_r2, pattern_r2, r4])
loss_vec_mul = torch.mul(loss_vec, cost)
loss = loss_model + torch.sum(loss_vec_mul)
loss.backward()
optimizer.step()
optimizer.zero_grad()
mask = tanh_func(atanh_mask) # (h, w)
mark = tanh_func(atanh_mark) # (c, h, w)
# h_mask = hard_mask(mask.detach(), patch_size=5)
# predict, test_acc = validate(test_dataloader, model, mark, h_mask, target_label)
# mask_norm_epoch = mask.detach().norm(p=1)
# print('L1-norm-mask = {}'.format(mask_norm_epoch))
mask_norm = mask.norm(p=1)
print('Epoch{0} '
'Loss {losses_sh.val:.2f} ({losses_sh.avg:.2f})\t'
'Accuracy {acc_sh.val:.3f} ({acc_sh.avg:.3f})\t'
'Norm {1:.2f}'.format(
_epoch, mask_norm, losses_sh=losses, acc_sh=acces))
if acces.avg >= attack_succ_threshold:
mask_best = mask.detach()
mark_best = mark.detach()
fusion = mask_best * mark_best
image = unloader(fusion.cpu())
plt.imshow(image)
plt.savefig(os.path.join(dir, 'target{0}'.format(target_label)))
torch.save(mask_best, os.path.join(dir, 'target{0}_mask'.format(target_label)))
torch.save(mark_best, os.path.join(dir, 'target{0}_mark'.format(target_label)))
mask_norm = mask.norm(p=1)
print('Epoch{0} '
'Loss {losses_sh.val:.2f} ({losses_sh.avg:.2f})\t'
'Accuracy {acc_sh.val:.3f} ({acc_sh.avg:.3f})\t'
'Norm {1:.2f}'.format(
_epoch, mask_norm, losses_sh=losses, acc_sh=acces))
cost_up_counter += 1
cost_down_counter = 0
else:
cost_up_counter = 0
cost_down_counter += 1
if cost_up_counter >= patience:
cost_up_counter = 0
cost *= cost_multiplier_up
elif cost_down_counter >= patience:
cost_down_counter = 0
cost /= cost_multiplier_down
if mask_best is None:
mask_best = tanh_func(atanh_mask).detach()
mark_best = tanh_func(atanh_mark).detach()
fusion = mask_best * mark_best
image = unloader(fusion.cpu())
plt.imshow(image)
plt.savefig(os.path.join(dir, 'target{0}'.format(target_label)))
torch.save(mask_best, os.path.join(dir, 'target{0}_mask'.format(target_label)))
torch.save(mark_best, os.path.join(dir, 'target{0}_mark'.format(target_label)))
mask_norm = mask.norm(p=1)
print('Epoch{0} '
'Loss {losses_sh.val:.2f} ({losses_sh.avg:.2f})\t'
'Accuracy {acc_sh.val:.3f} ({acc_sh.avg:.3f})\t'
'Norm {1:.2f}'.format(
_epoch, mask_norm, losses_sh=losses, acc_sh=acces))
atanh_mark.requires_grad = False
atanh_mask.requires_grad = False
return mark_best, mask_best
def validate(val_loader, model, mark_best, mask_best, target_label):
entropy = AverageMeter('Entropy', ':.4e')
acc = AverageMeter('Acc', ':6.2f')
criterion = nn.CrossEntropyLoss()
# switch to evaluate mode
model.eval()
predict = torch.zeros(10).cuda()
for idx, (image, target) in enumerate(val_loader):
image = image.type(torch.FloatTensor)
image = image.cuda()
target = target.cuda()
batch_size = target.size(0)
X = image + mask_best * (mark_best - image)
Y = target_label * torch.ones_like(target, dtype=torch.long).cuda()
# compute output
with torch.no_grad():
_output = model(X)
batch_acc = Y.eq(_output.argmax(1)).float().mean()
batch_entropy = criterion(_output, Y)
acc.update(batch_acc.item(), batch_size)
entropy.update(batch_entropy.item(), batch_size)
result = _output.argmax(1)
for i in range(10):
predict[i] += torch.sum(result.eq(i))
return predict, acc.avg
def tv_norm(input, tv_beta):
img = input
row_grad = torch.mean(torch.abs((img[:-1, :] - img[1:, :])).pow(tv_beta))
col_grad = torch.mean(torch.abs((img[:, :-1] - img[:, 1:])).pow(tv_beta))
return row_grad + col_grad
def hard_mask(mask, patch_size):
original_mask = copy.deepcopy(mask)
index = original_mask.reshape(-1).sort()[1][-patch_size ** 2:]
original_mask.reshape(-1)[index] = 2
new_mask = original_mask.eq(2).float()
return new_mask