-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathEval.py
60 lines (50 loc) · 2.23 KB
/
Eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#!/usr/bin/env python
# coding=utf-8
from __future__ import absolute_import
from __future__ import print_function, division
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
warnings.simplefilter(action='ignore', category=DeprecationWarning)
import os
from os import path
import numpy as np
import tensorflow as tf
from DSQ import DSQ, IMAGE_WIDTH, IMAGE_HEIGHT
from Dataset import Dataset
import datetime
tf.logging.set_verbosity(tf.logging.ERROR)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string("Dataset", "NUS", "The preferred dataset")
tf.app.flags.DEFINE_string("Mode", "eval", "train or evaluate")
tf.app.flags.DEFINE_integer("BitLength", 32, "The quantization code length")
tf.app.flags.DEFINE_integer("ClassNum", 21, "The classification class number")
tf.app.flags.DEFINE_integer("K", 256, "The centroids number")
tf.app.flags.DEFINE_integer(
"PrintEvery", 50, "How many batches after one print")
tf.app.flags.DEFINE_float("LearningRate", 1e-4, "Init learning rate")
tf.app.flags.DEFINE_integer("Epoch", 64, "How many epoches")
tf.app.flags.DEFINE_integer("BatchSize", 256, "Batch size")
tf.app.flags.DEFINE_string("Device", "0", "Device ID")
tf.app.flags.DEFINE_boolean("UseGPU", True, "Batch size")
tf.app.flags.DEFINE_boolean("SaveModel", True, "Options to save in every epoch")
tf.app.flags.DEFINE_integer("R", 5000, "Recall@R, -1 for all")
tf.app.flags.DEFINE_float("Lambda", 0.1, "lambda")
tf.app.flags.DEFINE_float("Tau", 1, "tau")
tf.app.flags.DEFINE_float("Mu", 1, "Mu")
tf.app.flags.DEFINE_float("Nu", 0.1, "Nu")
os.environ['CUDA_VISIBLE_DEVICES'] = str(FLAGS.Device)
def main(_):
model = DSQ(FLAGS)
a = "/device:GPU:0" if FLAGS.UseGPU else "/cpu:0"
print("Using device:", a, "<-", FLAGS.Device)
with tf.device(a):
queryX, queryY, db = Dataset.PreparetoEval(FLAGS.Dataset, IMAGE_WIDTH, IMAGE_HEIGHT)
result = model.Evaluate(queryX, queryY, db)
now = datetime.datetime.now()
if not path.exists('results'):
os.mkdir('results')
with open('./results/result_{0}_{1}'.format(model._name, now.strftime("%Y-%m-%d %H:%M:%S")),'w') as fp:
fp.write(result + '\n')
if __name__ == '__main__':
tf.app.run()