-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathELViM.py
330 lines (289 loc) · 14.7 KB
/
ELViM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Aug 14 07:50:54 2023
@author: rafael
"""
import argparse
import numpy as np
from numba import njit, prange
import os
import shutil
import mdtraj as md
import force_scheme as force
import sys
@njit(parallel=True, fastmath=False) ####dissimilarity defautl, generalizar para diferentes sigma_0 e epsilon
def square_to_condensed(sqdmat):
"""
Convert the symmetrical square matrix to the required condensed form.
"""
size, _ = sqdmat.shape
total = size*(size+1)//2
d=np.zeros(total, dtype=np.float32)
for k in prange (size):
for l in prange (k, size):
d[int(total - ((size - k) * (size - k + 1) / 2) + (l - k))] = sqdmat[k,l]
return d
@njit(parallel=True, fastmath=False) ####dissimilarity defautl, generalizar para diferentes sigma_0 e epsilon
def dissimilarity(coords, d, k, s0,size, atoms, total):
epsilon=0.15
sigma_0=s0
for l in prange (k, size):
N=0
ep=0
for i in prange(atoms):
for j in prange (i+1,atoms):
xijk = (coords[k][i][0] - coords[k][j][0])
yijk = (coords[k][i][1] - coords[k][j][1])
zijk = (coords[k][i][2] - coords[k][j][2])
rijk = np.sqrt(xijk*xijk + yijk*yijk + zijk*zijk)
xijl = (coords[l][i][0] - coords[l][j][0])
yijl = (coords[l][i][1] - coords[l][j][1])
zijl = (coords[l][i][2] - coords[l][j][2])
rijl = np.sqrt(xijl*xijl + yijl*yijl + zijl*zijl)
dr = (rijk-rijl)**2
sigma = sigma_0*abs(i-j)**epsilon
ep = ep + np.exp(-dr/(2*sigma**2))
N = N + 1
d[int(total - ((size - k) * (size - k + 1) / 2) + (l - k))] = 1-ep/N
pass
def calc_dmat(coords, s0, outdm, verbose):
"""
Calculates the dissimilarity matrix using coordinates of C-alpha carbons.
Using other representations, such as all atoms or different number of
coarse-grain beads, requires adjusting the residue number.
Parameters
----------
coords : np.float32
C-alpha atomic coordinates in Angstrom [frames, atom_index, (x, y, z)]
s0 : float
Gaussian width. Can be changed to gauge the dissimilarity. Default value is one.
"""
# Optional: Import tqdm if verbose is enabled
if verbose:
try:
from tqdm import tqdm
except ImportError:
print("Error: tqdm is not installed. Please install it using `pip install tqdm` to enable verbose mode with progress bar. \n")
sys.exit(1) # Disable verbose mode if tqdm is not available
size, atoms, _=coords.shape
total = int(size*(size+1)/2)
dmat=np.zeros(total, dtype=np.float32)
if verbose:
for k in tqdm(range (size), desc='Calculating the dissimilarity matrix'):
dissimilarity(coords, dmat, k, s0, size, atoms, total)
else:
for k in range (size):
dissimilarity(coords, dmat, k, s0, size, atoms, total)
if outdm!=None:
if os.path.exists(outdm):
backup_file(outdm)
np.save(outdm, dmat)
print("Dissimilarity matrix save in condensed form to the file {} \n".format(outdm))
return dmat
def get_coords(traj_file, top_file):
# Load the trajectory file
if traj_file[-4:] != '.pdb' and top_file==None:
raise RuntimeError("A topology file is needed! \n")
try:
if traj_file[-4:] == '.pdb':
traj = md.load(traj_file)
else:
traj=md.load(traj_file, top=top_file)
print("Trajectory succesfully loaded! \n")
except:
raise RuntimeError("Error loading trajectory. \n")
# Select C-alpha and get coordinates in Angstroms
ca_indices=traj.topology.select("name == CA")
coords=traj.xyz
coords=coords[:,ca_indices,:]*10 # Angstrom
return coords
def backup_file(file_path):
backup_path = file_path + '.bak'
shutil.move(file_path, backup_path)
print(f"Existing file '{file_path}' backed up to '{backup_path}'. \n")
def read_dmat(dmat_file):
try:
try:
dmat = np.load(dmat_file)
except:
dmat = np.loadtxt(dmat_file)
except:
raise RuntimeError("Failed to load the dissimilarity matrix from both binary .npy and text file formats. \n")
if len(dmat.shape)==1:
size = int(0.5*(np.sqrt(1+8*len(dmat)-1)))
if dmat[0]!=0:
raise RuntimeError("Make sure the condensed matrix includes the main diagonal zeros. \n")
print("Loaded a condensed matrix for {} conformations \n".format(size))
elif len(dmat.shape)==2:
size, size2 =dmat.shape
if size!=size2:
raise RuntimeError("The dissimilarity matrix should be square (NxN) \n")
# Check if the loaded matrix is approximately symmetric
is_sym = np.allclose(dmat, dmat.T, atol=1e-3)
if not is_sym:
raise RuntimeError("The dissimilarity matrix should be symmetric \n")
dmat = square_to_condensed(dmat)
print("Loaded a square matrix for {} conformations \n".format(size))
else:
raise RuntimeError('''The dissimilarity matrix should be a symmetrical nxn or its condensed form.
See tutorials for details. \n''')
return dmat, size
def main():
""" Read either a trajectory, a dissimilarity matrix or an MDtraj coordinate matrix and output the projection.
Args:
-f (filename): Pre-processed MD trajectory to be projected in any format recognized by MDtraj
-t (filename): Topology information (eg. frame.pdb) for loading binary trajectories
-dm (filename): File containing a dissimilarity matrix (default: None)
-c (filename): File containing the matrix coords.npy. Coordinates should be in Angstrom (default: None).
-s0 (float): sigma_0 for dissimilarity (default: 1).
-lr0 (float): Initial value for the learning rate (default: 0.4)
-lrmin (lrmin): Minimum value for the learning rate (default: 0.05)
-d (float): Exponential decay of the learning_rate (default: 0.95)
-it (int): Maximum number of iterations (default: sqrt(n_frames))
-tol (float): Residual error tolerance to stop iterations (default: 0)
-o (filename): Name to save the ELViM projection coordinates file (default: projection.out)
-odm (filename): Name to save the dissimilarity matrix (default: None)
- v (--verbose) : Show progress bar (requires the tqdm library)
Returns:
output (file): binary numpy file (.npy) containing the compressed dissimilarity matrix (default: coords.npy)
output (file): ELViM projection coordinates file (default: projection.out)
"""
message='''This program can:
1. Read the trajectory file (pdb or other formats +ref.pdb, calculate the dissimilarity matrix
and perform the ELViM projection. \n
2. Read a distance matrix in the symmetrical square or condensed format and perform the
ELViM projection.
3. Read a binary file containing a coordinate matrix saved in MDtraj format in angstroms (traj.xyz*10)
* Only one of the previous options should be provided.
* To save the dissimilarity matrix for other projections use -odm name.npy'''
texto = """
_______ ___ ___ ___ ___ _____ ______
|\ ___ \ |\ \ |\ \ / /|\ \|\ _ \ _ \
\ \ __/|\ \ \ \ \ \ / / | \ \ \ \\\__\ \ \
\ \ \_|/_\ \ \ \ \ \/ / / \ \ \ \ \\|__| \ \
\ \ \_|\ \ \ \____\ \ / / \ \ \ \ \ \ \ \
\ \_______\ \_______\ \__/ / \ \__\ \__\ \ \__\\
\|_______|\|_______|\|__|/ \|__|\|__| \|__|
ELViM :)
Version 1.1
Please cite:
Viegas, R. G., Martins, I. B., Sanches, M. N., Oliveira Junior, A. B.,
Camargo, J. B. D., Paulovich, F. V., & Leite, V. B. (2024).
ELViM: Exploring Biomolecular Energy Landscapes through Multidimensional Visualization.
Journal of Chemical Information and Modeling, 64(8), 3443-3450.
Oliveira Jr, A. B., Yang, H., Whitford, P. C., & Leite, V. B. (2019).
Distinguishing biomolecular pathways and metastable states.
Journal of Chemical Theory and Computation, 15(11), 6482-6490.
"""
print(texto)
parser = argparse.ArgumentParser(description=message)
parser.add_argument("-f", dest="trajectory_file",
action="store", type=str, default=None,
help="Name of the trajectory file (in any format recognized by MDtraj)")
parser.add_argument("-t", dest="topology_file",
action="store", type=str, default=None,
help="Name of the topology file (eg. 'frame.pdb', necessary for binary trajectories)")
parser.add_argument("-dm", dest="dmat",
action="store", type=str, default=None,
help="Name of a precomputed dissimilarity matrix file (default: None).")
parser.add_argument("-c", dest="coords",
action="store", type=str, default=None,
help="Name of the coordinate matrix file in MDtraj format (default: None).")
parser.add_argument("-s0", dest="sigma0",
action="store", type=float, default=1.0,
help=" sigma_0 for dissimilarity (default: 1).")
parser.add_argument("-lr0", dest="lr0", action="store", type=float, default=0.4,
help="Initial learning rate (default: 0.4).")
parser.add_argument("-lrmin", dest="lrmin", action="store", type=float, default=0.05,
help="Minimum value for learning rate (default: 0.05).")
parser.add_argument("-d", dest="decay", action="store", type=float, default=0.95,
help="Learning rate decay exponent (default: 0.95)")
parser.add_argument("-it", dest="max_it",
action="store", type=int, default=None,
help="Maximum number of iteration (default sqrt(n_frames))")
parser.add_argument("-tol", dest="tolerance", action="store", type=float, default=0,
help="tolerance to achieve convergence (default: 0)")
parser.add_argument("-o", dest="output_proj",
action="store", type=str, default="projection.out",
help="ELViM projection coordinates (default: projection.out)")
parser.add_argument("-odm", dest="output_dmat",
action="store", type=str, default=None,
help="Condensed dissimilarity matrix in binary file (default: None).")
parser.add_argument('-v', '--verbose', action='store_true', help="Show progress information (require tqdm library)")
args = parser.parse_args()
traj_file=args.trajectory_file
top_file=args.topology_file
dmat_file=args.dmat
coords_file=args.coords
s0 = args.sigma0
max_it=args.max_it
lr0=args.lr0
lrmin=args.lrmin
tol=args.tolerance
decay=args.decay
outdm=args.output_dmat
outp=args.output_proj
verbose=args.verbose
#### Check if only one of the possible files are parsed to avoid ambiguities between them.
files = [traj_file, dmat_file, coords_file]
nfiles = sum(files is not None for files in files)
if nfiles == 0:
raise RuntimeError('''One of the following files should be provided:
(1) A trajectory file (plus a topology)
(2) A dissimilarity matrix
(3) A MDtraj coordinates file
Try "python ELViM.py -h" to see the options. \n''')
elif nfiles > 1:
raise RuntimeError('''Only one of the following files should be provided:
(1) A trajectory file (plus a topology)
(2) A dissimilarity matrix
(3) An MDtraj coordinates file). \n''')
#Read traj and calculate the dissimilarity matrix
if traj_file!=None:
coords=get_coords(traj_file, top_file)
dmat = calc_dmat(coords, s0, outdm, verbose)
size, atom, _=coords.shape
print('Dissimilaty matrix calculated considering {} conformations and {} alpha carbons \n'.format(size, atom))
elif dmat_file!=None:
dmat, size = read_dmat(dmat_file)
print('Dissimilaty matrix loaded. There are {} conformations \n'.format(size))
elif coords_file!=None:
try:
coords = np.load(coords_file)
if coords.shape[2]!=3:
raise RuntimeError("Dimension error: the coordinate array should follow MDtraj format in angstroms (trajectory.xyz*10) ")
print(''''
Coordinates matix loaded. Found {} frames and {} atoms.
Make sure coordinates contain only CA atoms and are expressed in angstroms \n.
'''. format(coords.shape[0], coords.shape[1]))
except:
raise RuntimeError('''Failed to load the coordinates file.
Make sure it is a binary numpy file (.npy),
and the matrix follows the MDtraj format (trajectory.xyz*10) \n''')
dmat = calc_dmat(coords, s0, outdm, verbose)
size, atom, _=coords.shape
print('Dissimilaty matrix calculated considering {} conformations and {} alpha carbons \n'.format(size, atom))
### Make the projection
### Initializing the projection with points randomly distributed
projection = np.random.random((size, 2))
if max_it==None:
max_it = int(np.sqrt(size))
### Running force scheme
nr_iterations, error, kstress = force.execute(dmat, projection, max_it, verbose, lr0, lrmin, decay, tol)
print('ELViM projection done with {} iteratons. \n'.format(max_it))
### write the projection coordinates file
if os.path.exists(outp):
backup_file(outp)
with open(outp, 'w') as f:
f.write("# ELViM Coordinates file. \n")
if dmat_file==None:
f.write("# Dissimilarity matrix calculated with sigma0={} \n".format(s0))
else:
f.write("# Dissimilarity matrix read from the file : {}\n".format(dmat_file))
f.write("# {} iterations with lr0 = {:5.3f}, lrmin = {:5.3f}, and decay = {:5.3f} \n".format(nr_iterations, lr0, lrmin, decay))
f.write("# Mean projection error = {:6.4f}, Stress = {:6.4f} \n".format(error[nr_iterations-1], kstress[nr_iterations-1]))
np.savetxt(f, projection, delimiter=" ", fmt="%.4f")
if __name__=="__main__":
main()
exit(0)