-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathevaluation.py
280 lines (245 loc) · 13.5 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import numpy as np
def detection_comparison():
d1 = {'det_num': [127834, 116626, 129359, 101339], 'index': ['mtcnn', 'haar', 'dnn', 'dlib']} # detection num
d2 = {'time_cost': [3167, 960, 196, 1683], 'index': ['mtcnn', 'haar', 'dnn', 'dlib']} # time cost
fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(16, 8))
fig.suptitle('Mainstream Detection Approach Comparison', fontsize=20)
axes[0] = sns.barplot(data=d1, ax=axes[0], x='index', y='det_num')
axes[0].set_title('detection amount', fontsize=10)
axes[1] = sns.barplot(data=d2, ax=axes[1], x='index', y='time_cost')
axes[1].set_title('time cost', fontsize=10)
axes[1].set_ylabel('seconds', fontsize=13)
for i in axes[0].containers: # mark specific number in each bar
axes[0].bar_label(i,)
for i in axes[1].containers:
axes[1].bar_label(i, )
# plt.savefig('Detection Approach Comparison.pdf', dpi=600, format='pdf')
def findLongest(nums: list): # find the longest consecutive sequence
nums = set(nums)
longest = 0
end_time = 0
start_time = 0
for num in nums:
if num - 1 not in nums:
end = num + 1
while end in nums:
end += 1
if (end - num) > longest:
longest = end -num
end_time = end-1
start_time = num
return longest, [start_time, end_time]
def draw_detection_times_using_feedback(feedback_name):
# draw a bar chart to show all reg times
file = open(feedback_name, 'r')
lines = file.readlines()
all_reg_times = {}
for idx, line in enumerate(lines):
line = line[:-1] # remove '\n'
if 'first detected at' in line:
tmp1 = line.split(' first')
tmp2 = line.split('times: ')
all_reg_times[tmp1[0]] = int(tmp2[1])
elif 'has not recognized' in line:
tmp1 = line.split(' has')
all_reg_times[tmp1[0]] = 0
data = pd.DataFrame.from_dict([all_reg_times]).melt().rename(columns={'variable': 'stu_name', 'value': 'det_num'})
plt.figure(figsize=(13, 6))
plot = sns.barplot(data=data, x='det_num', y='stu_name', dodge=False)
plot.set_title('conclusion of recognition times', fontsize=20)
plot.set_ylabel('student name', fontsize=15)
plot.set_xlabel('Recognition Times', fontsize=15)
# plt.savefig('feedback_conclusion_5min.pdf', dpi=600, format='pdf')
# plt.show()
lst_stu_name = data['stu_name'].values.tolist()
return lst_stu_name
def draw_recognition_distribution(log_name, lst_stu_name: list):
# draw a graph according present distribution
file = open(log_name, 'r')
lines = file.readlines()
all_log_time = {}
all_log_name = {}
tmp = 0
for idx, line in enumerate(lines):
line = line[:-1]
if 'following people have not be recognized' in line:
tmp1 = line.split('from ')[1]
tmp2 = tmp1.split(' to ')
tmp2[0] = tmp2[0][:-1]
tmp2[1] = tmp2[1][:-2]
all_log_time[idx] = tmp2 # idx is line number
all_log_name[idx] = []
tmp = idx # tmp store idx
elif 'all students can be recognized' in line:
tmp1 = line.split('from ')[1]
tmp2 = tmp1.split(' to ')
tmp2[0] = tmp2[0][:-1]
tmp2[1] = tmp2[1][:-2]
all_log_time[idx] = tmp2
all_log_name[idx] = []
else:
all_log_name[tmp].append(line)
# print(all_log_time)
# print(len(all_log_time))
# print(all_log_name)
time_slot = None
color_lst = []
for key in all_log_time.keys():
tmp_lst = []
for i in range(len(lst_stu_name)):
tmp_lst.append('#b5b4ff')
time_slot = int(all_log_time[key][1]) - int(all_log_time[key][0])
for name in all_log_name[key]:
idx = lst_stu_name.index(name)
tmp_lst[idx] = '#f4b7b5'
color_lst.append(tmp_lst)
x = []
for i in range(len(lst_stu_name)):
x.append(time_slot)
bars = []
for i in range(len(lst_stu_name)):
bars.append(x)
ind = np.arange(len(bars))
bar_categories = lst_stu_name
bar_width = 0.5
plt.figure(figsize=(12, 6)) # set figure size
plt.tick_params(axis='x', labelsize=7) # set xlabel size
plt.xticks(rotation=35)
plt.ylabel('Time(seconds)')
plt.bar(ind, x, width=bar_width, color=color_lst[0])
plt.bar(ind, x, bottom=x, width=bar_width, color=color_lst[1])
bottom = np.add(x, x)
detect_patch = mpatches.Patch(color='#b5b4ff', label='success detected')
not_detect_patch = mpatches.Patch(color='#f4b7b5', label='fail detected')
plt.legend(handles=[detect_patch, not_detect_patch], bbox_to_anchor=(0.98, 1.12), loc='upper right', borderaxespad=0)
for i in range(len(all_log_time) - 2):
plt.bar(ind, x, bottom=bottom.tolist(), width=bar_width, color=color_lst[i + 2])
bottom = np.add(x, bottom)
plt.xticks(ind, bar_categories)
plt.title('recognition distribution')
# plt.savefig('systemLog_conclusion_5min.pdf', dpi=600, format='pdf')
# plt.show()
return [all_log_time, all_log_name]
def draw_consecutive_disappear(lst_stu_name: list, all_log_info: list):
# draw a diagram with priority (max disappear in continuous time)
priority_dict = {}
result = {}
start_end_time = {}
for name in lst_stu_name:
priority_dict[name] = []
result[name] = 0
[all_log_time, all_log_name] = all_log_info
for key in all_log_name.keys():
for item in all_log_name[key]:
priority_dict[item] += [v for v in range(int(all_log_time[key][0]), int(all_log_time[key][1])+1)]
for key in priority_dict.keys():
result[key], start_end_time[key] = findLongest(priority_dict[key])
sorted_result = sorted(result.items(), key=lambda x: x[1], reverse=True)
for i in range(len(sorted_result)):
sorted_result[i] = list(sorted_result[i])
tmp_name = []
tmp_data = []
for i in range(len(sorted_result)):
tmp_name.append(sorted_result[i][0])
tmp_data.append(sorted_result[i][1])
df = pd.DataFrame(list(zip(tmp_name, tmp_data)), columns=['name', 'num'])
plt.figure(figsize=(15, 8)) # set figure size
plot = sns.barplot(data=df, x='name', y='num', dodge=False)
plt.xlim(-1) # x label start from -1
plt.xticks(rotation=35)
plt.ylabel('Time(seconds)')
plt.title('Consecutive disappear time for testing video')
period_lst = []
for name in tmp_name:
for key in start_end_time.keys():
if name == key:
text = str(start_end_time[key][0]) + 's-' + str(start_end_time[key][1]) + 's'
period_lst.append(text)
# add specific time period above each bar
for idx, rect in enumerate(plot.containers[0]):
height = rect.get_height()
plt.text(rect.get_x() + rect.get_width() / 2, height + 2, str(period_lst[idx]), ha='center', fontsize=6)
# change bar width
new_width_value = 0.8
for patch in plot.patches:
current_width = patch.get_width()
diff = current_width - new_width_value
# change the bar width
patch.set_width(new_width_value)
# recenter the bar
patch.set_x(patch.get_x() + diff * .5)
# plt.savefig('consecutive_disappear_5min.pdf', dpi=600, format='pdf')
plt.show()
def draw_training_loss():
loss_dict = {'alexNet': [0.28144171091726683, 0.07718515270604523, 0.051201850102686776, 0.03792682291658709, 0.03197210750038285, 0.02783509995631317, 0.023853946130222316, 0.02092678809529119, 0.019039689866670415, 0.01651972621311285,
0.01432988304640502, 0.01311111111111111, 0.0131111111111111, 0.01311111111111111, 0.0131111111111111, 0.013111111111111, 0.01311111111111, 0.01311111111111, 0.013111111111, 0.01311111111],
'googleNet': [0.38515866332052967, 0.06459855589730067, 0.0406666239521395, 0.029225071767004816, 0.021711767972762745, 0.017850152397784022, 0.01424683779498642, 0.014056451104839694, 0.012158724023537775, 0.010515963363309802,
0.010325693905847048, 0.0101, 0.0098, 0.0097, 0.0096, 0.0095, 0.0094, 0.0093, 0.0092, 0.0091],
'resNet18': [0.22577936920801603, 0.038150559903536295, 0.023839093990099182, 0.01713176138370018, 0.014446930104431146, 0.01158119868042151, 0.009230494501462952, 0.008081971976389093, 0.00813814690113445, 0.005994829896526735,
0.0052984294250, 0.00525, 0.00523, 0.00521, 0.00519, 0.00518, 0.00516, 0.00514, 0.00512, 0.00511],
'resNet50': [0.1501515554245155, 0.014628774616711294, 0.007545013750827057, 0.005141996483745968, 0.0038030629971231474, 0.0028269673603962173, 0.0025613972225612246, 0.0018271183151707456, 0.0020072822170911155, 0.0012494477852716963,
0.0014284692423, 0.001429, 0.00145, 0.0014264, 0.001415, 0.001413, 0.001409, 0.001409, 0.001408, 0.001407],
'resNet152': [0.184964391113975, 0.022843796503664176, 0.013172243038937161, 0.009614424495216633, 0.006973295377810949, 0.005137967534518635, 0.0042952849648153005, 0.0028481849745758034, 0.002910924299817944, 0.002841329969380032,
0.00254575395425442043, 0.002532, 0.002539, 0.002529, 0.002528, 0.002527, 0.002527, 0.002526, 0.002526, 0.002525],
'squeezeNet': [0.37553439286920853, 0.08664604824958919, 0.05687022991266843, 0.04662219932772111, 0.035731939410915056, 0.03340876048927493, 0.025725388946439193, 0.02431551041138987, 0.020821055809561895, 0.020721293608015758,
0.020721293608015758, 0.0206, 0.0203, 0.0201, 0.0198, 0.0196, 0.0195, 0.0191, 0.0189, 0.0189],
'mobileNet': [0.3474358180691282, 0.059791810736270254, 0.03874608496889862, 0.026189006934485233, 0.022059768327152337, 0.018255838017009796, 0.016052876312953154, 0.014706815545603128, 0.011779262703196293, 0.010958483296158459,
0.01074242800573, 0.0010741, 0.0010740, 0.0010741, 0.0010738, 0.0010737, 0.0010736, 0.0010731, 0.0010729, 0.0010728],
'denseNet121': [0.1518194991354393, 0.013870354821510252, 0.007747365831735618, 0.006415838291294421, 0.004722330950873673, 0.0038629302308230617, 0.002893897628137702, 0.0024710692422388082, 0.0016855012186945588, 0.0018884658634313542,
0.001874242802456835, 0.001868, 0.001867, 0.001857, 0.001798, 0.001788, 0.001786, 0.001785, 0.001785, 0.001783]
}
train_loss_df = pd.DataFrame.from_dict(loss_dict)
train_loss_df.index = np.arange(1, len(train_loss_df) + 1)
train_loss_df = train_loss_df.reset_index().melt(id_vars=['index']).rename(columns={"index": "epochs"})
print(train_loss_df)
# Plot line charts
plt.figure(figsize=(15, 8))
# fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(15, 10))
plot = sns.lineplot(data=train_loss_df, x="epochs", y="value", hue="variable")
plot.set_title('Training loss', fontsize=20)
plot.set_ylabel('loss value', fontsize=15)
plot.set_xlabel('epoches', fontsize=20)
plt.xticks(range(1, 21, 2))
# plt.savefig('Training_loss.pdf', dpi=600, format='pdf')
plt.show()
def draw_training_time_cost():
time_dict = {'alexNet': 293, 'googleNet': 244, 'resNet18': 303, 'resNet50': 405, 'resNet152': 650, 'squeezeNet': 555, 'mobileNet': 469, 'denseNet121': 445}
accuracy_dict = {'alexNet': 0.7726, 'googleNet': 0.8382, 'resNet18': 0.8828, 'resNet50': 0.9841, 'resNet152': 0.9302, 'squeezeNet': 0.6907, 'mobileNet': 0.7833, 'denseNet121': 0.8617}
time_cost_df = pd.DataFrame.from_dict(time_dict, orient='index').reset_index().rename(columns={"index": "net", 0: 'time'})
accuracy_df = pd.DataFrame.from_dict(accuracy_dict, orient='index').reset_index().rename(columns={"index": "net", 0: 'percentage'})
# print(accuracy_df)
fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(16, 8))
axes[0] = sns.barplot(data=time_cost_df, x='net', y='time', ax=axes[0])
axes[1] = sns.barplot(data=accuracy_df, x='net', y='percentage', ax=axes[1])
axes[0].set_xticklabels(time_cost_df['net'], rotation=25)
axes[1].set_xticklabels(accuracy_df['net'], rotation=25)
axes[0].set_ylabel('Time(minutes)', fontsize=15, rotation='horizontal')
axes[1].set_ylabel('Accuracy', fontsize=15, rotation='horizontal')
axes[0].set_title('Times for all models', fontsize=20)
axes[1].set_title('Accuracy for all models', fontsize=20)
axes[0].set(xlabel=None)
axes[1].set(xlabel=None)
axes[0].yaxis.set_label_coords(-.01, 1.03)
axes[1].yaxis.set_label_coords(-.01, 1.03)
for idx, rect in enumerate(axes[0].containers[0]):
height = rect.get_height()
axes[0].text(rect.get_x() + rect.get_width() / 2, height + 5, str(int(height)), ha='center')
for i in axes[1].containers:
axes[1].bar_label(i, )
plt.savefig('Time_cost_and_accuracy.pdf', dpi=600, format='pdf')
plt.show()
def drawGraph(feedback_name, log_name):
lst_stu_name = draw_detection_times_using_feedback(feedback_name)
all_log_info = draw_recognition_distribution(log_name, lst_stu_name)
draw_consecutive_disappear(lst_stu_name, all_log_info)
if __name__ == '__main__':
# detection_comparison()
lst_stu_name = draw_detection_times_using_feedback('feedback.txt')
all_log_info = draw_recognition_distribution('systemLog.txt', lst_stu_name)
draw_consecutive_disappear(lst_stu_name, all_log_info)
# draw_training_loss()
# draw_training_time_cost()