-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathcompute_ssim.py
54 lines (48 loc) · 1.56 KB
/
compute_ssim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import torch
import random, os
import argparse
from PIL import Image
import torchvision
import numpy as np
import pytorch_msssim
from utils import UnlabeledImageFolder
from tqdm import tqdm
parser = argparse.ArgumentParser()
parser.add_argument('--path', type=str, required=True, nargs='+')
args = parser.parse_args()
# generate radom index
nrow = 16
img_index = random.sample(list(range(50000)), nrow*nrow)
path1 = args.path[0]
path2 = args.path[1]
print(path1, path2)
img_dst1 = UnlabeledImageFolder(path1, transform=torchvision.transforms.ToTensor(), exts=["png"])
img_dst2 = UnlabeledImageFolder(path2, transform=torchvision.transforms.ToTensor(), exts=["png"])
print(len(img_dst1), len(img_dst2))
loader1 = torch.utils.data.DataLoader(
img_dst1,
batch_size=100,
shuffle=False,
num_workers=4,
drop_last=False,
)
loader2 = torch.utils.data.DataLoader(
img_dst2,
batch_size=100,
shuffle=False,
num_workers=4,
drop_last=False,
)
with torch.no_grad():
ssim_list = []
mse_list = []
for i, (img1, img2) in tqdm(enumerate(zip(loader1, loader2))):
ssim = pytorch_msssim.ssim(img1.cuda(), img2.cuda(), data_range=1.0, size_average=False)
ssim_list.append(ssim.cpu())
mse = torch.nn.functional.mse_loss(img1.cuda(), img2.cuda(), reduction='none').mean(dim=(1,2,3))
mse_list.append(mse.cpu())
ssim = torch.cat(ssim_list, dim=0)
mse = torch.cat(mse_list, dim=0)
ssim_avg = ssim.mean()
mse_avg = mse.mean()
print("path1: {}, path2: {}, ssim: {}, mse: {}".format(path1, path2, ssim_avg, mse_avg))