-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathhsi_eval.py
64 lines (49 loc) · 1.84 KB
/
hsi_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import os
import argparse
from utility import *
from hsi_setup import Engine, train_options
import models
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
prefix = 'test'
if __name__ == '__main__':
"""Training settings"""
parser = argparse.ArgumentParser(
description='Hyperspectral Image Denoising')
opt = train_options(parser)
print(opt)
cuda = not opt.no_cuda
opt.no_log = True
"""Setup Engine"""
engine = Engine(opt)
datadir = '' # your input data dir
basefolder = '/media/kaixuan/DATA/Papers/Code/Matlab/ECCV2018/ECCVData'
# datadir = os.path.join(basefolder, 'icvl_512_50')
# datadir = os.path.join(basefolder, 'icvl_512_blind')
# datadir = os.path.join(basefolder, 'icvl_512_noniid')
datadir = os.path.join(basefolder, 'icvl_512_mixture')
mat_dataset = MatDataFromFolder(datadir, size=None)
# mat_dataset.filenames = [
# os.path.join(datadir, 'Lehavim_0910-1627.mat')
# ]
mat_transform = Compose([
LoadMatHSI(input_key='input', gt_key='gt', transform=lambda x:x[:,:,:][None]), # for validation
# LoadMatKey(key='hsi'), # for testing
# lambda x: x[None]
])
mat_dataset = TransformDataset(mat_dataset, mat_transform)
mat_loader = DataLoader(
mat_dataset,
batch_size=1, shuffle=False,
num_workers=1, pin_memory=cuda
)
resdir = None # your result dir
# res_arr, input_arr = engine.test_develop(mat_loader, savedir=resdir, verbose=True)
# print(res_arr.mean(axis=0))
engine.validate(mat_loader, '')