-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathhsi_test.py
52 lines (38 loc) · 1.2 KB
/
hsi_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import os
import argparse
from utility import *
from hsi_setup import Engine, train_options
import models
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
prefix = 'test'
if __name__ == '__main__':
"""Training settings"""
parser = argparse.ArgumentParser(
description='Hyperspectral Image Denoising')
opt = train_options(parser)
print(opt)
cuda = not opt.no_cuda
opt.no_log = True
"""Setup Engine"""
engine = Engine(opt)
mat_dataset = MatDataFromFolder('data/Satellite')
mat_transform = Compose([
LoadMatKey(key='img'), # for testing
lambda x: x[:,:220,:256][None],
minmax_normalize,
])
mat_dataset = TransformDataset(mat_dataset, mat_transform)
mat_loader = DataLoader(
mat_dataset,
batch_size=1, shuffle=False,
num_workers=1, pin_memory=cuda
)
# print(engine.net)
engine.test_real(mat_loader, savedir=None)