-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrandom_generator_battery.py
319 lines (285 loc) · 14.1 KB
/
random_generator_battery.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
# ------------------------------------------------------------------------
# Energy management environment for reinforcement learning agents developed by
# Hou Shengren, TU Delft, h.shengren@tudelft.nl
import random
import numpy as np
import pandas as pd
import gym
from gym import spaces
from Parameters import battery_parameters, dg_parameters
class Constant:
MONTHS_LEN = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
MAX_STEP_HOURS = 24 * 30 # TODO: ??? How and where is it used ?
class DataManager():
def __init__(self) -> None:
self.PV_Generation = []
self.Prices = []
self.Electricity_Consumption = []
def add_pv_element(self, element):
self.PV_Generation.append(element)
def add_price_element(self,element):
self.Prices.append(element)
def add_electricity_element(self,element):
self.Electricity_Consumption.append(element)
# get current time data based on given month day, and day_time
def get_pv_data(self, month, day, day_time):
return self.PV_Generation[(sum(Constant.MONTHS_LEN[:month-1])+day-1)*24+day_time]
def get_price_data(self,month,day,day_time):
return self.Prices[(sum(Constant.MONTHS_LEN[:month-1])+day-1)*24+day_time]
def get_electricity_cons_data(self,month,day,day_time):
return self.Electricity_Consumption[(sum(Constant.MONTHS_LEN[:month-1])+day-1)*24+day_time]
# get series data for one episode
def get_series_pv_data(self,month,day):
return self.PV_Generation[(sum(Constant.MONTHS_LEN[:month-1])+day-1)*24:(sum(Constant.MONTHS_LEN[:month-1])+day-1)*24+24]
def get_series_price_data(self,month,day):
return self.Prices[(sum(Constant.MONTHS_LEN[:month-1])+day-1)*24:(sum(Constant.MONTHS_LEN[:month-1])+day-1)*24+24]
def get_series_electricity_cons_data(self,month,day):
return self.Electricity_Consumption[(sum(Constant.MONTHS_LEN[:month-1])+day-1)*24:(sum(Constant.MONTHS_LEN[:month-1])+day-1)*24+24]
class DG():
''' simulate a simple diesel generator here '''
def __init__(self, parameters):
self.name = parameters.keys()
self.a_factor = parameters['a']
self.b_factor = parameters['b']
self.c_factor = parameters['c']
self.power_output_max = parameters['power_output_max']
self.power_output_min = parameters['power_output_min']
self.ramping_up = parameters['ramping_up']
self.ramping_down = parameters['ramping_down']
self.last_step_output = None
def step(self, action_gen):
output_change = action_gen*self.ramping_up # constrain the output_change with ramping up boundary
output = self.current_output+output_change
if output > 0:
output = max(self.power_output_min, min(self.power_output_max, output)) # meet the constraint
else:
output = 0
self.current_output = output
def _get_cost(self, output):
if output <= 0:
cost = 0
else:
cost = (self.a_factor*pow(output, 2) + self.b_factor*output + self.c_factor)
return cost
def reset(self):
self.current_output = 0
class Battery():
'''simulate a simple battery here'''
def __init__(self, parameters):
self.capacity = parameters['capacity']
self.max_soc = parameters['max_soc']
self.initial_capacity = parameters['initial_capacity']
self.min_soc = parameters['min_soc'] # 0.2
self.degradation = parameters['degradation'] # degradation cost 1.2
self.max_charge = parameters['max_charge'] # max charge ability
self.max_discharge = parameters['max_discharge']
self.efficiency = parameters['efficiency']
def step(self, action_battery):
energy = action_battery*self.max_charge
updated_capacity = max(self.min_soc, min(self.max_soc, (self.current_capacity*self.capacity+energy)/self.capacity))
self.energy_change = (updated_capacity-self.current_capacity)*self.capacity # if charge, positive, if discharge, negative
self.current_capacity = updated_capacity # update capacity to current codition
def _get_cost(self, energy): # calculate the cost depends on the energy change
cost = energy**2*self.degradation
return cost
def SOC(self):
return self.current_capacity
def reset(self):
self.current_capacity = np.random.uniform(0.2, 0.8)
class Grid():
def __init__(self):
self.on = True
if self.on:
self.exchange_ability = 100
else:
self.exchange_ability = 0
def _get_cost(self, current_price, energy_exchange):
return current_price*energy_exchange
def retrive_past_price(self):
result = []
if self.day < 1:
past_price = self.past_price
else:
past_price = self.price[24*(self.day-1):24*self.day]
# print(past_price)
for item in past_price[(self.time-24)::]:
result.append(item)
for item in self.price[24*self.day:(24*self.day+self.time)]:
result.append(item)
return result
class ESSEnv(gym.Env):
def __init__(self, **kwargs):
super(ESSEnv,self).__init__()
#parameters
self.data_manager = DataManager()
self._load_year_data()
self.episode_length = kwargs.get('episode_length', 24)
self.month = None
self.day = None
self.current_time = None
self.TRAIN = True
self.battery_parameters = kwargs.get('battery_parameters', battery_parameters)
self.dg_parameters = kwargs.get('dg_parameters', dg_parameters)
self.penalty_coefficient = 50 # control soft penalty constrain
self.sell_coefficient = 0.5 # control sell benefits
self.grid = Grid()
self.battery = Battery(self.battery_parameters)
self.dg1 = DG(self.dg_parameters['gen_1'])
self.dg2 = DG(self.dg_parameters['gen_2'])
self.dg3 = DG(self.dg_parameters['gen_3'])
self.action_space = spaces.Box(low=-1, high=1, shape=(4,), dtype=np.float32)
self.state_space = spaces.Box(low=0, high=1, shape=(7,), dtype=np.float32)
# @property
# def netload(self):
# return self.demand - self.grid.wp_gen - self.grid.pv_gen # TODO: ??? what is wp_gen and pv_gen
def reset(self,):
self.month = np.random.randint(1, 13) # here we choose 12 month
if self.TRAIN:
self.day = np.random.randint(1, 20) # TODO: ??? why 20
else:
self.day = np.random.randint(20, Constant.MONTHS_LEN[self.month]-1)
self.current_time = 0
self.battery.reset()
self.dg1.reset()
self.dg2.reset()
self.dg3.reset()
return self._build_state()
def _build_state(self):
soc = self.battery.SOC()
dg1_output = self.dg1.current_output
dg2_output = self.dg2.current_output
dg3_output = self.dg3.current_output
time_step = self.current_time
electricity_demand = self.data_manager.get_electricity_cons_data(self.month, self.day, self.current_time)
pv_generation = self.data_manager.get_pv_data(self.month, self.day, self.current_time)
price = self.data_manager.get_price_data(self.month, self.day, self.current_time)
net_load = electricity_demand - pv_generation
obs = np.concatenate((np.float32(time_step),
np.float32(price),
np.float32(soc),
np.float32(net_load),
np.float32(dg1_output),
np.float32(dg2_output),
np.float32(dg3_output)), axis=None)
return obs
def step(self, action): # state transition here current_obs-->take_action-->get reward-->get_finish-->next_obs
## here we want to put take action into each components
current_obs = self._build_state()
self.battery.step(action[0]) # here execute the state-transition part, battery.current_capacity also changed
self.dg1.step(action[1])
self.dg2.step(action[2])
self.dg3.step(action[3])
current_output = np.array((self.dg1.current_output,
self.dg2.current_output,
self.dg3.current_output,
-self.battery.energy_change)) # truely corresonding to the result
self.current_output = current_output
actual_production = sum(current_output)
netload = current_obs[3]
price = current_obs[1]
unbalance = actual_production - netload
reward = 0
excess_penalty = 0
deficient_penalty = 0
sell_benefit = 0
buy_cost = 0
self.excess = 0
self.shedding = 0
if unbalance >= 0: # it is now in excess condition
if unbalance <= self.grid.exchange_ability:
sell_benefit = self.grid._get_cost(price, unbalance)*self.sell_coefficient # sell money to grid is little [0.029,0.1]
else:
sell_benefit = self.grid._get_cost(price, self.grid.exchange_ability)*self.sell_coefficient
# real unbalance that even grid could not meet
self.excess = unbalance - self.grid.exchange_ability
excess_penalty = self.excess*self.penalty_coefficient
else: # unbalance <0, its load shedding model, in this case, deficient penalty is used
if abs(unbalance) <= self.grid.exchange_ability:
buy_cost = self.grid._get_cost(price, abs(unbalance))
else:
buy_cost = self.grid._get_cost(price, self.grid.exchange_ability)
self.shedding = abs(unbalance) - self.grid.exchange_ability
deficient_penalty = self.shedding*self.penalty_coefficient
battery_cost = self.battery._get_cost(self.battery.energy_change) # we set it as 0 this time
dg1_cost = self.dg1._get_cost(self.dg1.current_output)
dg2_cost = self.dg2._get_cost(self.dg2.current_output)
dg3_cost = self.dg3._get_cost(self.dg3.current_output)
reward -= (battery_cost
+ dg1_cost
+ dg2_cost
+ dg3_cost
+ excess_penalty
+ deficient_penalty
- sell_benefit
+ buy_cost)/1e3 # TODO: ??? why divide by 1e3
self.operation_cost = (battery_cost
+ dg1_cost
+ dg2_cost
+ dg3_cost
+ buy_cost
- sell_benefit
+ excess_penalty
+ deficient_penalty)
self.unbalance = unbalance
self.real_unbalance = self.shedding + self.excess
final_step_outputs = [self.dg1.current_output,
self.dg2.current_output,
self.dg3.current_output,
self.battery.current_capacity]
self.current_time += 1
finish = (self.current_time == self.episode_length)
if finish:
self.final_step_outputs = final_step_outputs
self.current_time = 0
# self.day+=1
# if self.day>Constant.MONTHS_LEN[self.month-1]:
# self.day=1
# self.month+=1
# if self.month>12:
# self.month=1
# self.day=1
next_obs = self.reset()
else:
next_obs = self._build_state()
return current_obs, next_obs, float(reward), finish
def render(self, current_obs, next_obs, reward, finish):
print('day={}, hour={:2d}, state={}, next_state={}, reward={:.4f}, terminal={}\n'.format(self.day,
self.current_time,
current_obs,
next_obs,
reward,
finish))
def _load_year_data(self):
# hourly PV data
pv_df = pd.read_csv('data/PV.csv', sep=';')
# hourly price data for a year
price_df = pd.read_csv('data/Prices.csv', sep=';')
# mins electricity consumption data for a year
electricity_df = pd.read_csv('data/H4.csv',sep=';')
pv_data = pv_df['P_PV_'].apply(lambda x: x.replace(',','.')).to_numpy(dtype=float)
price = price_df['Price'].apply(lambda x:x.replace(',','.')).to_numpy(dtype=float)
electricity = electricity_df['Power'].apply(lambda x:x.replace(',','.')).to_numpy(dtype=float)
# netload = electricity-pv_data
'''we carefully redesign the magnitude for price and amount of generation as well as demand'''
for element in pv_data:
self.data_manager.add_pv_element(element*200) # TODO: ??? why multiplied by 200
for element in price:
element/=10 # TODO: ??? why divided by 10
if element <= 0.5:
element = 0.5
self.data_manager.add_price_element(element)
for i in range(0, electricity.shape[0], 60):
element = electricity[i:i+60]
self.data_manager.add_electricity_element(sum(element)*300) # TODO: ??? why multiplied by 300
if __name__ == '__main__':
env=ESSEnv()
env.TRAIN = False
rewards = []
current_obs = env.reset()
tem_action = [0.1, 0.1, 0.1, 0.1]
for _ in range (2): # 144
print(f'current month is {env.month}, current day is {env.day}, current time is {env.current_time}')
current_obs, next_obs, reward, finish = env.step(tem_action)
env.render(current_obs, next_obs, reward, finish)
current_obs = next_obs
rewards.append(reward)