-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathfake_news_code_d.py
79 lines (47 loc) · 1.85 KB
/
fake_news_code_d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# -*- coding: utf-8 -*-
"""fake news code_d.ipynb
Automatically generated by Colaboratory.
# This Python 3 environment comes with many helpful analytics libraries installed
# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python
# For example, here's several helpful packages to load
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
# Input data files are available in the read-only "../input/" directory
# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory
# Modelling Algorithms
from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import PassiveAggressiveClassifier
# Modelling Helpers
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction.text import CountVectorizer
from sklearn import metrics
# Computations
import itertools
# Visualization
import matplotlib.pyplot as plt
test = pd.read_csv ("test.csv")
submit = pd.read_csv ("submit.csv")
train = pd.read_csv("test.csv")
train.head()
print(f"Train Shape : {train.shape}")
print(f"Test Shape : {test.shape}")
print(f"Submit Shape : {submit.shape}")
train.info()
train.isnull().sum()
train.dtypes.value_counts()
test=test.fillna(' ')
train=train.fillna(' ')
# Create a column with all the data available
test['total']=test['title']+' '+test['author']+' '+test['text']
train['total']=train['title']+' '+train['author']+' '+train['text']
# Have a glance at our training set
train.info()
train.head()
"""Hi WAIT ............
This is Just Small Demo.
Full Code is long...
Full Project is Available with Porject Report and PPT.
##Mail me at **Vatshayan007@mail.com** to get this project.
"""