-
Notifications
You must be signed in to change notification settings - Fork 0
/
naive_bayes.py
executable file
·67 lines (56 loc) · 2.18 KB
/
naive_bayes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from __future__ import print_function
# $example on$
from pyspark.ml.classification import NaiveBayes
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
# $example off$
from pyspark.sql import SparkSession
import sys
if __name__ == "__main__":
spark = SparkSession\
.builder\
.appName("NaiveBayesExample")\
.getOrCreate()
# $example on$
# Load training data
data = spark.read.format("libsvm") \
.load(sys.argv[1])
# Split the data into train and test
splits = data.randomSplit([0.8, 0.2], 1234)
train = splits[0]
test = splits[1]
# create the trainer and set its parameters
nb = NaiveBayes(smoothing=1.0, modelType="multinomial")
# train the model
model = nb.fit(train)
# select example rows to display.
predictions = model.transform(test)
predictions.show()
# compute accuracy on the test set
evaluator = MulticlassClassificationEvaluator(labelCol="label", predictionCol="prediction",
metricName="accuracy")
accuracy = evaluator.evaluate(predictions)
print("Test set accuracy = " + str(accuracy))
# $example off$
if sys.argv[2] == "Test":
classify_file = spark.read.format("libsvm") \
.load(sys.argv[3])
predictions = model.transform(classify_file)
print("Unknow data")
predictions.show()
spark.stop()