forked from snap-stanford/distance-encoding
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
96 lines (82 loc) · 5.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import argparse
from dataloaders import *
from log import *
from train import *
def main():
parser = argparse.ArgumentParser('Interface for DE-GNN framework (Node Classification)')
# general model and training setting
parser.add_argument('--dataset', type=str, default='cora', help='dataset name')
parser.add_argument('--model', type=str, default='DE-SAGE', help='base model to use',
choices=['DE-SAGE', 'DE-GNN', 'GCN', 'GAT', 'GIN'])
parser.add_argument('--layers', type=int, default=2, help='number of layers')
parser.add_argument('--hidden_dim', type=int, default=32, help='hidden dimension')
parser.add_argument('--data_usage', type=float, default=1.0, help='use partial dataset')
parser.add_argument('--test_ratio', type=float, default=0.2, help='ratio of the test / valid against whole')
parser.add_argument('--metric', type=str, default='acc', help='metric for evaluating performance',
choices=['acc', 'auc'])
parser.add_argument('--seed', type=int, default=0, help='seed to initialize all the random modules')
parser.add_argument('--gpu', type=int, default=0, help='gpu id')
parser.add_argument('--directed', type=bool, default=False,
help='(Currently unavailable) whether to treat the graph as directed')
# features and positional encoding
parser.add_argument('--prop_depth', type=int, default=1, help='propagation depth (number of hops) for one layer')
parser.add_argument('--num_hop', type=int, default=-1, help='total number of hops for subgraph extraction')
parser.add_argument('--no_degree', default=False, action="store_true",
help='whether to use node degree as node feature')
parser.add_argument('--use_raw', type=str, default='None', help='which way to use node attributes')
parser.add_argument('--use_de', default=False, action="store_true",
help='whether to use distance encoding as node feature')
parser.add_argument('--de_feature', type=str, default='sp',
help='distance encoding category: shortest path or random walk (landing probabilities)')
# sp (shortest path) or rw (random walk)
parser.add_argument('--max_rw', type=int, default=3, help='maximum steps for random walk feature')
parser.add_argument('--max_sp', type=int, default=3, help='greatest distance for shortest path feature')
# model training
parser.add_argument('--optimizer', type=str, default='adam', help='optimizer to use')
parser.add_argument('--epoch', type=int, default=500, help='number of epochs to train')
parser.add_argument('--bs', type=int, default=32, help='minibatch size')
parser.add_argument('--lr', type=float, default=1e-4, help='learning rate')
parser.add_argument('--dropout', type=float, default=0., help='dropout rate')
parser.add_argument('--l2', type=float, default=0., help='l2 regularization (weight decay)')
parser.add_argument('--patience', type=int, default=50, help='early stopping steps')
parser.add_argument('--repeat', type=int, default=0, help='number of training instances to repeat')
# logging & debug
parser.add_argument('--log_dir', type=str, default='./log/', help='log directory')
parser.add_argument('--summary_file', type=str, default='result_summary.log',
help='brief summary of training results')
parser.add_argument('--debug', default=False, action='store_true', help='whether to use debug mode')
sys_argv = sys.argv
try:
args = parser.parse_args()
except:
parser.print_help()
sys.exit(0)
# check parsed-in parameters and set up logger
arg_check(args)
logger = set_up_log(args, sys_argv)
set_random_seed(args)
# load dataset from files
(G, labels), raw_features = read_file(args, logger)
# convert to Pytorch_geometric Data format
datalist, labels = get_data(G, labels=labels, args=args, logger=logger)
dim_in, dim_out = datalist[0].x.shape[-1], len(np.unique(labels))
model = get_model(layers=args.layers, in_features=dim_in, out_features=dim_out,
raw_features=raw_features, prop_depth=args.prop_depth, args=args, logger=logger)
if args.repeat > 0:
dic_res = []
for r in range(args.repeat):
# randomly split dataset and construct dataloaders
data = gen_dataloader(datalist, test_ratio=args.test_ratio, bs=args.bs, logger=logger, labels=labels)
results = train_model(model, data, args, logger, repeat=r)
dic_res.append([results[0] * 100, results[1] * 100])
save_performance_result(args, logger, results, repeat=r)
mean_acc = np.mean(dic_res, axis=0)
std_acc = np.std(dic_res, axis=0)
logger.info(f'{args.metric} ({args.repeat} Results, [w/, w/o]): '
f'mean {mean_acc[0]:.2f}, {mean_acc[1]:.2f}; std {std_acc[0]:.2f}, {std_acc[1]:.2f};')
else:
data = gen_dataloader(datalist, test_ratio=args.test_ratio, bs=args.bs, logger=logger, labels=labels)
results = train_model(model, data, args, logger, repeat=args.repeat)
save_performance_result(args, logger, results, repeat=args.repeat)
if __name__ == '__main__':
main()