Skip to content

Latest commit

 

History

History
139 lines (119 loc) · 6.23 KB

README.md

File metadata and controls

139 lines (119 loc) · 6.23 KB

OpenKE

SpherE: Expressive and Interpretable Knowledge Graph Embedding for Set Retrieval, SIGIR'2024

https://arxiv.org/abs/2404.19130

Environment Setup

To run our code, you need to have a Python environment and a C++ environment. The Python version we used is 3.11. Some requirements are needed, such as pytorch, sklearn, tqdm, numpy. To run our code, one needs to compile the C++ files first

cd openke
bash make.sh

Our code builds on the OpenKE public benchmark repository for Knowledge Graph Embedding. The weights of our trained models that generate the test data reported in the paper can be downloaded at https://drive.google.com/file/d/1KmMORNqsQdtx8XUa-iqZX_rOBB12A4je/view?usp=drive_link. In this README, SS means we embed the entities as spheres instead of vectors/points. SSRotatE is SpherE-2D, SSRotatE3D is SpherE-3D, and k-dimensional SSHousE-r is Sphere-kD

Command to train/test a SpherE model based on RotatE or RotatE 3D

The first line is to train the model, and the second line is to test the model

command to run rotate model on dataset FB15K237

python train_rotate_FB15K237.py
python train_rotate_FB15K237.py --test

command to run rotate model on dataset WN18RR

python train_rotate_WN18RR.py
python train_rotate_WN18RR.py --test

command to run ssrotate model on dataset FB15K237

python train_ssrotate_FB15K237.py
python train_ssrotate_FB15K237.py --test

command to run ssrotate model on dataset WN18RR

python train_ssrotate_WN18RR.py
python train_ssrotate_WN18RR.py --test

command to run rotate3D model on dataset FB15K237

python train_rotate3D_FB15K237.py
python train_rotate3D_FB15K237.py --test

command to run rotate3D model on dataset WN18RR

python train_rotate3D_WN18RR.py
python train_rotate3D_WN18RR.py --test

command to run ssrotate3D model on dataset FB15K237

python train_ssrotate3D_FB15K237.py
python train_ssrotate3D_FB15K237.py --test

command to run ssrotate3D model on dataset WN18RR

python train_ssrotate3D_WN18RR.py
python train_ssrotate3D_WN18RR.py --test

Use our trained SpherE-2D or SpherE-3D weights instead of re-train

After downloading our model weights, extract the compressed file. You should have a foler with two sub-folders: models and sskgemb. Please place all the files in the "sskgemb" directory into the "./checkpoint" directory of the working directory of this README. Then, you can directly run the --test commands, for example

python train_rotate_FB15K237.py --test

Command to train/test a SpherE model based on HousE with k-dimensional rotation.

The code for SpherE and HousE are stored in the ./HousE directory.

cd HousE

train HousE_r on FB15k237: remember to change the save path when re-running: -save models/HousE_r_FB15k-237_0

python codes/run.py --do_train --cuda --do_valid --do_test --data_path data/FB15k-237 --model HousE_r -n 500 -b 500 -d 600 -hd 20 -dn 6 -th 0.6 -g 5 -a 2 -adv -lr 0.0008 --max_steps 20000 --warm_up_steps 10000 -save models/HousE_r_FB15k-237_0 --test_batch_size 16 -r 0.003367

train SSHousE_r on FB15k237: remember to change the save path when re-running: -save models/HousE_r_FB15k-237_0

python codes/run.py --do_train --cuda --do_valid --do_test --data_path data/FB15k-237 --model SSHousE_r -n 500 -b 500 -d 600 -hd 20 -dn 6 -th 0.6 -g 5 -a 2 -adv -lr 0.0008 --max_steps 20000 --warm_up_steps 10000 -save models/SSHousE_r_FB15k-237_0 --test_batch_size 16 -r 0.003367

train HousE_r on WN18RR: remember to change the save path when re-running: -save models/HousE_r_wn18rr_0

python codes/run.py --do_train --cuda --do_valid --do_test --data_path data/wn18rr --model HousE_r -n 1000 -b 200 -d 800 -hd 20 -dn 1 -th 0.5 -g 6 -a 14940435933987 -adv -lr 0.00057 --max_steps 40000 --warm_up_steps 20000 -save models/HousE_r_wn18rr_0 --test_batch_size 8 -r 0.0960737047401994

train SSHousE_r on WN18RR: remember to change the save path when re-running: -save models/SSHousE_r_wn18rr_0

python codes/run.py --do_train --cuda --do_valid --do_test --data_path data/wn18rr --model HousE_r -n 1000 -b 200 -d 800 -hd 20 -dn 1 -th 0.5 -g 6 -a 14940435933987 -adv -lr 0.00057 --max_steps 40000 --warm_up_steps 20000 -save models/SSHousE_r_wn18rr_0 --test_batch_size 8 -r 0.0960737047401994

test HousE_r model: remember to check the model path to load --path dim_k_HousE_r_FB15k-237_0

python codes/test_sshouse_retrieval.py --path dim_k_HousE_r_FB15k-237_0 --model HousE_r

test SSHousE_r model: remember to check the model path to load --path dim_k_SSHousE_r_FB15k-237_0

python codes/test_sshouse_retrieval.py --path dim_k_SSHousE_r_FB15k-237_0 --model SSHousE_r

test HousE_r model: remember to check the model path to load --path dim_k_HousE_r_wn18rr_0

python codes/test_sshouse_retrieval.py --path dim_k_HousE_r_wn18rr_0 --model HousE_r

test SSHousE_r model: remember to check the model path to load --path dim_k_SSHousE_r_wn18rr_0

python codes/test_sshouse_retrieval.py --path dim_k_SSHousE_r_wn18rr_0 --model SSHousE_r

Use our trained SpherE-kD weights instead of re-train

After downloading our model weights, extract the compressed file. You should have a foler with two sub-folders: models and sskgemb. Please place all the files in the "model" directory into the "./checkpoint" directory of the working directory of this README. Then, you can directly run the --test commands, for example

python codes/test_sshouse_retrieval.py --path dim_k_SSHousE_r_FB15k-237_0 --model SSHousE_r

Reference

@article{DBLP:journals/corr/abs-2404-19130,
  author       = {Zihao Li and
                  Yuyi Ao and
                  Jingrui He},
  title        = {SpherE: Expressive and Interpretable Knowledge Graph Embedding for
                  Set Retrieval},
  journal      = {CoRR},
  volume       = {abs/2404.19130},
  year         = {2024},
  url          = {https://doi.org/10.48550/arXiv.2404.19130},
  doi          = {10.48550/ARXIV.2404.19130},
  eprinttype    = {arXiv},
  eprint       = {2404.19130},
  timestamp    = {Mon, 27 May 2024 14:55:45 +0200},
  biburl       = {https://dblp.org/rec/journals/corr/abs-2404-19130.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}