-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathinit.lua
773 lines (615 loc) · 17 KB
/
init.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
-- This file contains common vars and funcs
local cv = require 'cv._env'
local ffi = require 'ffi'
require 'torch'
require 'paths'
local packageRoot = paths.thisfile('')
function cv.libPath(libName)
if ffi.os == 'Windows' then
return packageRoot .. '\\lib\\' .. libName .. '.dll'
elseif ffi.os == 'OSX' then
return packageRoot .. '/lib/lib' .. libName .. '.dylib'
else
return packageRoot .. '/lib/lib' .. libName .. '.so'
end
end
ffi.cdef[[
struct TensorWrapper {
void *tensorPtr;
char typeCode;
bool definedInLua;
};
struct TensorArray {
struct TensorWrapper *tensors;
int size;
};
void initAllocator();
void initAllocatorCUDA(struct cutorchInfo info);
void *malloc(size_t size);
void free(void *ptr);
void transfer_tensor(void *destination, struct TensorWrapper source);
void transfer_tensor_CUDA(void *state, void *destination, struct TensorWrapper source);
struct SizeWrapper {
int width, height;
};
struct Size2fWrapper {
float width, height;
};
struct TermCriteriaWrapper {
int type, maxCount;
double epsilon;
};
struct ScalarWrapper {
double v0, v1, v2, v3;
};
struct Vec2dWrapper {
double v0;
};
struct Vec3dWrapper {
double v0, v1, v2;
};
struct Vec3fWrapper {
float v0, v1, v2;
};
struct Vec3iWrapper {
int v0, v1, v2;
};
struct Vec4iWrapper {
int v0, v1, v2, v3;
};
struct RectWrapper {
int x, y, width, height;
};
struct PointWrapper {
int x, y;
};
struct Point2fWrapper {
float x, y;
};
struct Point2dWrapper {
double x, y;
};
struct RotatedRectWrapper {
struct Point2fWrapper center;
struct Size2fWrapper size;
float angle;
};
struct MomentsWrapper {
double m00, m10, m01, m20, m11, m02, m30, m21, m12, m03;
double mu20, mu11, mu02, mu30, mu21, mu12, mu03;
double nu20, nu11, nu02, nu30, nu21, nu12, nu03;
};
struct RotatedRectPlusRect {
struct RotatedRectWrapper rotrect;
struct RectWrapper rect;
};
struct DMatchWrapper {
int queryIdx;
int trainIdx;
int imgIdx;
float distance;
};
struct DMatchArray {
int size;
struct DMatchWrapper *data;
};
struct DMatchArrayOfArrays {
int size;
struct DMatchArray *data;
};
struct KeyPointWrapper {
struct Point2fWrapper pt;
float size, angle, response;
int octave, class_id;
};
struct KeyPointArray {
struct KeyPointWrapper *data;
int size;
};
struct TensorPlusKeyPointArray {
struct TensorWrapper tensor;
struct KeyPointArray keypoints;
};
struct TensorPlusInt {
struct TensorWrapper tensor;
int val;
};
struct TensorPlusDouble {
struct TensorWrapper tensor;
double val;
};
struct TensorPlusFloat {
struct TensorWrapper tensor;
float val;
};
struct TensorPlusBool {
struct TensorWrapper tensor;
bool val;
};
struct TensorPlusRect {
struct TensorWrapper tensor;
struct RectWrapper rect;
};
struct TensorArrayPlusInt {
struct TensorArray tensors;
int val;
};
struct TensorArrayPlusRect {
struct TensorArray tensors;
struct RectWrapper rect;
};
struct TensorArrayPlusFloat {
struct TensorArray tensors;
float val;
};
struct TensorArrayPlusDouble {
struct TensorArray tensors;
double val;
};
struct TensorArrayPlusBool {
struct TensorArray tensors;
bool val;
};
struct TensorArrayPlusVec3d {
struct TensorArray tensors;
struct Vec3dWrapper vec3d;
};
struct SizePlusInt {
struct SizeWrapper size;
int val;
};
struct RectPlusInt {
struct RectWrapper rect;
int val;
};
struct RectPlusBool {
struct RectWrapper rect;
bool val;
};
struct ScalarPlusBool {
struct ScalarWrapper scalar;
bool val;
};
struct IntArray {
int *data;
int size;
};
struct UCharArray {
unsigned char *data;
int size;
};
struct FloatArray {
float *data;
int size;
};
struct DoubleArray {
double *data;
int size;
};
struct PointArray {
struct PointWrapper *data;
int size;
};
struct RectArray {
struct RectWrapper *data;
int size;
};
struct SizeArray {
struct SizeWrapper *data;
int size;
};
struct ClassArray {
struct PtrWrapper *data;
int size;
};
struct TensorPlusRectArray {
struct TensorWrapper tensor;
struct RectArray rects;
};
struct TensorPlusPoint {
struct TensorWrapper tensor;
struct PointWrapper point;
};
struct FloatArrayOfArrays {
float **pointers;
float *realData;
int dims;
};
int getIntMax();
float getFloatMax();
double getDblEpsilon();
struct PointArrayOfArrays {
struct PointWrapper **pointers;
struct PointWrapper *realData;
int dims;
int *sizes;
};
struct StringArray {
char **data;
int size;
};
// for debugging
void refcount(void *x);
]]
local C = ffi.load(cv.libPath('Common'))
local WITH_CUDA, CUDACommon_C = pcall(ffi.load, cv.libPath('CUDACommon'))
require 'cv.constants'
cv.INT_MAX = C.getIntMax()
cv.FLT_MAT = C.getFloatMax()
cv.DBL_EPSILON = C.getDblEpsilon();
cv.NULLPTR = ffi.new('void *', nil)
--- ***************** Argument checking & unpacking *****************
function cv.argcheck(t, rules)
assert(type(t) == 'table',
'Use curly braces {} for calling OpenCV functions, not parentheses ()')
local retval = {}
for i, argument in ipairs(rules) do
local userInputArg = t[argument[1]]
if userInputArg == nil then
userInputArg = t[i]
end
if userInputArg == nil then
if argument.required then
error('Argument #' .. i .. ' ("' .. argument[1] .. '") is required!')
else
userInputArg = argument.default
end
end
local function identity(...) return ... end
retval[i] = (argument.operator or identity)(userInputArg)
end
return table.unpack(retval, 1, #rules)
end
--- ***************** Tensor <=> Mat conversion *****************
C.initAllocator()
if WITH_CUDA then
cv.cuda = cv.cuda or require 'cv._env_cuda'
CUDACommon_C.initAllocatorCUDA(cv.cuda._info())
end
local tensor_CV_code_by_letter = {
[ 66] = cv.CV_8U , -- B : Byte
[ 70] = cv.CV_32F , -- F : Float
[ 68] = cv.CV_64F , -- D : Double
[ 73] = cv.CV_32S , -- I : Int
[ 83] = cv.CV_16S , -- S : Short
[104] = cv.CV_8S , -- h : Char
[117] = cv.CV_CUDA, -- u : Cuda
}
local tensor_type_by_CV_code = {
[cv.CV_8U ] = "Byte",
[cv.CV_32F ] = "Float",
[cv.CV_64F ] = "Double",
[cv.CV_32S ] = "Int",
[cv.CV_16S ] = "Short",
[cv.CV_8S ] = "Char",
[cv.CV_CUDA] = "Cuda"
}
cv.EMPTY_WRAPPER = ffi.new("struct TensorWrapper", nil)
cv.EMPTY_MULTI_WRAPPER = ffi.new("struct TensorArray", nil)
function cv.tensorType(tensor)
-- get the first letter of Tensor type
local typeString = tensor:type()
local letter = typeString:byte(7)
if letter == 76 then
-- L (ongTensor)
error("Sorry, LongTensors aren't supported. Consider using IntTensor")
elseif letter == 67 then
-- C (harTensor or udaTensor; take second letter to clarify)
letter = typeString:byte(8)
end
return tensor_CV_code_by_letter[letter]
end
local
function empty_tensor_of_type(code)
-- See #94
-- assert(code ~= cv.CV_16U, "Sorry, cv::Mats of type CV_16U aren't supported.")
return torch[tensor_type_by_CV_code[code] .. "Tensor"]()
end
-- torch.RealTensor ---> tensor:cdata(), tensor_type_CV_code
local
function prepare_for_wrapping(tensor)
return tensor:cdata(), cv.tensorType(tensor)
end
-- torch.RealTensor ---> struct TensorWrapper
function cv.wrap_tensor(tensor)
if not tensor then
return cv.EMPTY_WRAPPER
end
return ffi.new("struct TensorWrapper", prepare_for_wrapping(tensor))
end
function cv.wrap_tensors(...)
if not ... then
return cv.EMPTY_MULTI_WRAPPER
end
local args = {...}
if type(args[1]) == "table" then
args = args[1]
end
local wrapper = ffi.new("struct TensorArray")
wrapper.size = #args
wrapper.tensors = ffi.gc(C.malloc(#args * ffi.sizeof("struct TensorWrapper")), C.free)
for i, tensor in ipairs(args) do
wrapper.tensors[i-1] = cv.wrap_tensor(tensor)
end
return wrapper
end
-- struct TensorWrapper(s) ---> torch.<type>Tensor(s)
function cv.unwrap_tensors(wrapper, toTable)
if ffi.istype(ffi.typeof(wrapper), cv.EMPTY_WRAPPER) then
-- handle single tensor
if wrapper.tensorPtr == nil then
return empty_tensor_of_type(wrapper.typeCode)
end
local retval = empty_tensor_of_type(wrapper.typeCode)
if wrapper.typeCode == cv.CV_CUDA then
CUDACommon_C.transfer_tensor_CUDA(cutorch._state, retval:cdata(), wrapper)
else
C.transfer_tensor(retval:cdata(), wrapper)
end
return retval
else
-- handle multiple tensors
if wrapper.tensors == nil then
-- return nothing in case of a nullptr
return
end
local retval = {}
for i = 0,wrapper.size-1 do
local tempTensor = empty_tensor_of_type(wrapper.tensors[i].typeCode)
C.transfer_tensor(tempTensor:cdata(), wrapper.tensors[i])
table.insert(retval, tempTensor)
end
C.free(wrapper.tensors)
if toTable then
return retval
else
return table.unpack(retval)
end
end
end
-- see filter_depths in opencv2/imgproc.hpp
function cv.checkFilterCombination(src, ddepth)
local srcType = cv.tensorType(src)
if srcType == cv.CV_8U then
return ddepth == cv.CV_16S or ddepth >= cv.CV_32F or ddepth == -1
elseif srcType == cv.CV_16S or srcType == cv.CV_32F then
return ddepth >= cv.CV_32F or ddepth == -1
elseif srcType == cv.CV_64F then
return ddepth == cv.CV_64F or ddepth == -1
else
return false
end
end
--- ***************** Wrappers for small OpenCV classes *****************
-- Use these for passing into functions. Example:
-- r = cv.Rect(10, 10, 15, 25)
-- OR
-- r = cv.Rect{10, 10, 15, 25}
-- OR
-- r = cv.Rect{x=10, y=10, width=15, height=25}
-- OR
-- r1 = cv.Rect{x=10, y=10, width=15, height=25}
-- r2 = cv.Rect(r1)
-- same with most of the following wrappers (see OpenCV defs)
-- TODO: generate these straight in the code
function cv.Rect(...)
return ffi.new('struct RectWrapper', ...)
end
function cv.TermCriteria(...)
return ffi.new('struct TermCriteriaWrapper', ...)
end
function cv.Scalar(...)
return ffi.new('struct ScalarWrapper', ...)
end
function cv.Moments(...)
return ffi.new('struct MomentsWrapper', ...)
end
function cv.Size(...)
return ffi.new('struct SizeWrapper', ...)
end
function cv.Size2f(...)
return ffi.new('struct Size2fWrapper', ...)
end
function cv.Vec3d(...)
return ffi.new('struct Vec3dWrapper', ...)
end
function cv.Vec4i(...)
return ffi.new('struct Vec4iWrapper', ...)
end
function cv.Point(...)
return ffi.new('struct PointWrapper', ...)
end
function cv.Point2f(...)
return ffi.new('struct Point2fWrapper', ...)
end
function cv.Point2d(...)
return ffi.new('struct Point2dWrapper', ...)
end
function cv.RotatedRect(...)
return ffi.new('struct RotatedRectWrapper', ...)
end
--- ***************** Other helper structs *****************
--[[
TODO: get rid of this function!
Makes an <IntArray, FloatArray, ...> from a table of numbers.
Generally, if you're calling a function that uses Array many
times, consider reusing the retval of this function.
Example (not very realistic):
cv.calcHist{images=im, channels={3,3,1,3,4}, ......}
OR
ch = cv.newArray('Int', {3,3,1,3,4})
for i = 1,1e8 do
cv.calcHist{images=im, channels=ch, ...}
......
--]]
function cv.newArray(elemType, data)
local retval
local fullTypeName
local shortTypeName
if elemType == "Class" then
-- create class array
local retval = ffi.new('struct ClassArray')
retval.data = ffi.gc(C.malloc(#data * ffi.sizeof('struct PtrWrapper')), C.free)
retval.size = #data
for i, value in ipairs(data) do
retval.data[i-1] = data[i].ptr
end
return retval
end
if elemType:byte(3) == 46 then
-- there's a period after 2 symbols: likely "cv.Something"
shortTypeName = elemType:sub(4)
fullTypeName = 'struct ' .. shortTypeName .. 'Wrapper'
retval = ffi.new('struct ' .. shortTypeName .. 'Array')
else
-- C primitive type, such as 'Int' or 'Float'
if elemType:byte(1) == 85 then
fullTypeName = 'unsigned ' .. elemType:sub(2):lower()
else
fullTypeName = elemType:lower()
end
retval = ffi.new('struct ' .. elemType .. 'Array')
end
if not data then
-- create an array with no data
-- here, we assume that our C function will resize the array
retval.data = ffi.gc(cv.NULLPTR, C.free)
retval.size = 0
return retval
end
if type(data) == 'number' then
retval.data = ffi.gc(C.malloc(data * ffi.sizeof(fullTypeName)), C.free)
retval.size = data
return retval
end
retval.data = ffi.gc(C.malloc(#data * ffi.sizeof(fullTypeName)), C.free)
retval.size = #data
if elemType:byte(3) == 46 then
for i, value in ipairs(data) do
retval.data[i-1] = cv[shortTypeName](data[i])
end
else
for i, value in ipairs(data) do
retval.data[i-1] = data[i]
end
end
return retval
end
-- TODO: get rid of this function!
-- example: table of tables of numbers ---> struct FloatArrayOfArrays
function cv.numberArrayOfArrays(elemType, data)
local retval = ffi.new('struct ' .. elemType .. 'ArrayOfArrays')
-- first, compute relative addresses
retval.pointers = ffi.gc(C.malloc(#data * ffi.sizeof(elemType:lower() .. '*') + 1), C.free)
retval.pointers[0] = nil
for i, row in ipairs(data) do
data[i] = data[i-1] + #row
end
retval.realData = ffi.gc(C.malloc(totalElemSize * ffi.sizeof(elemType:lower())), C.free)
retval.pointers[0] = retval.realData
local counter = 0
for i, row in ipairs(data) do
-- fill data
for j, elem in ipairs(row) do
retval.realData[counter] = elem
counter = counter + 1
end
-- transform relative addresses to absolute
retval.pointers[i] = retval.pointers[i] + retval.realData
end
end
-- TODO: get rid of this function!
function cv.arrayToLua(array, outputType, output)
local retval
if output then
for i = 1,array.size do
output[i] = array.data[i-1]
end
C.free(array.data)
return output
end
if outputType == 'table' then
retval = {}
elseif outputType == 'Tensor' then
-- ctype has the form 'ctype<struct IntArray>'
local ctype = tostring(ffi.typeof(array))
local typeStart = 14
local typeEnd = ctype:find('Arr') - 1
retval = torch[ctype:sub(typeStart, typeEnd) .. 'Tensor'](array.size)
end
for i = 1,array.size do
retval[i] = array.data[i-1]
end
C.free(array.data)
return retval
end
function cv.tableToDMatchArrayOfArrays(tbl)
local result = ffi.new('struct DMatchArrayOfArrays')
result.size = #tbl
result.data = ffi.gc(
C.malloc(#tbl * ffi.sizeof('struct DMatchArray')),
C.free)
for i = 1, #tbl do
result.data[i-1] = tbl[i]
end
end
-- make an array that has come from C++ garbage-collected
function cv.gcarray(array)
array.data = ffi.gc(array.data, C.free)
return array
end
function cv.unwrap_strings(array)
array.data = ffi.gc(array.data, C.free)
local string_array = {}
for i = 1,array.size do
array.data[i-1].str = ffi.gc(array.data[i-1].str, C.free)
string_array[i] = ffi.string(array.data[i-1].str)
end
return string_array
end
ffi.cdef[[
void MatchesInfo_dtor(
struct PtrWrapper other);
void ImageFeatures_dtor(
struct PtrWrapper ptr);
void CameraParams_dtor(
struct PtrWrapper ptr);
]]
local C = ffi.load(cv.libPath('stitching'))
function cv.unwrap_class(name_class, array)
--need to add unwrapper for every class
if name_class == "MatchesInfo" then
local class_array = {}
for i = 1,array.size do
local temp = torch.factory('cv.' .. name_class)()
temp.ptr = ffi.gc(array.data[i-1], C.MatchesInfo_dtor)
class_array[i] = temp
end
return class_array
end
if name_class == "ImageFeatures" then
local class_array = {}
for i = 1,array.size do
local temp = torch.factory('cv.' .. name_class)()
temp.ptr = ffi.gc(array.data[i-1], C.ImageFeatures_dtor)
class_array[i] = temp
end
return class_array
end
if name_class == "CameraParams" then
local class_array = {}
for i = 1,array.size do
local temp = torch.factory('cv.' .. name_class)()
temp.ptr = ffi.gc(array.data[i-1], C.CameraParams_dtor)
class_array[i] = temp
end
return class_array
end
return nil
end
-- for debugging
function cv.refcount(tensor)
C.refcount(tensor:cdata())
end
require 'cv.core'
return cv