You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
args.save = True # Uncomment this line to store trained weights
lit_deformable.run_train(
data_loader=coco_loader,
args=args,
project="deformable",
expe_name="coco_detr",
)
The text was updated successfully, but these errors were encountered:
if coco dataset does not exist in config file, user is asked to download and use a sample. If we answer yes there is a problem with the path.
Code to regenerate the bug (coco dataset need to not be on the machine):
from alonet.deformable_detr import LitDeformableDetr, DeformableDetrR50Finetune
from argparse import ArgumentParser, Namespace
import alonet
from alonet.detr import CocoDetection2Detr
import torch
def params2Namespace(litdetr, level):
print(f"[INFO] LEVEL {level}:", Namespace(
accumulate_grad_batches=litdetr.accumulate_grad_batches,
gradient_clip_val=litdetr.gradient_clip_val,
model_name=litdetr.model_name,
weights=litdetr.weights
))
TRAINING PIPELINE
device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
Parameters definition
Build parser (concatenates arguments to modify the entire project)
parser = ArgumentParser(conflict_handler="resolve")
parser = alonet.common.add_argparse_args(parser) # Add common arguments in train process
parser = CocoDetection2Detr.add_argparse_args(parser)
parser = LitDeformableDetr.add_argparse_args(parser)
args = parser.parse_args()
Dataset use to train
coco_loader = CocoDetection2Detr(args)
lit_deformable = LitDeformableDetr(args)
Train process
args.save = True # Uncomment this line to store trained weights
lit_deformable.run_train(
data_loader=coco_loader,
args=args,
project="deformable",
expe_name="coco_detr",
)
The text was updated successfully, but these errors were encountered: