-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadgence_labels_time.py
86 lines (72 loc) · 3 KB
/
adgence_labels_time.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#!/usr/bin/env python
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This application demonstrates how to perform basic operations with the
Google Cloud Video Intelligence API.
For more information, check out the documentation at
https://cloud.google.com/videointelligence/docs.
Usage Example:
python labels.py gs://cloud-ml-sandbox/video/chicago.mp4
"""
# [START full_tutorial]
# [START imports]
import argparse
import sys
import time
from google.cloud.gapic.videointelligence.v1beta1 import enums
from google.cloud.gapic.videointelligence.v1beta1 import (
video_intelligence_service_client)
# [END imports]
def analyze_labels(path, scanned_time, duration):
""" Detects labels given a GCS path. """
# [START construct_request]
video_client = (video_intelligence_service_client.
VideoIntelligenceServiceClient())
features = [enums.Feature.LABEL_DETECTION]
operation = video_client.annotate_video(path, features)
# [END construct_request]
print('\nProcessing video for label annotations:')
# [START check_operation]
while not operation.done():
sys.stdout.write('.')
sys.stdout.flush()
time.sleep(20)
print('\nFinished processing.')
# [END check_operation]
# [START parse_response]
results = operation.result().annotation_results[0]
for label in results.label_annotations:
for l, location in enumerate(label.locations):
if(location.segment.start_time_offset <= int(scanned_time) and location.segment.end_time_offset >= (int(scanned_time) + int(duration))):
print('Label description: {}'.format(label.description))
print('Locations:')
print('\t{}: {} to {}'.format(
l,
location.segment.start_time_offset,
location.segment.end_time_offset))
else:
continue
# [END parse_response]
if __name__ == '__main__':
# [START running_app]
parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('path', help='GCS file path for label detection.')
parser.add_argument('scanned_time', help='Starting time sent from scanned Video')
parser.add_argument('duration', help='Duration for with to look for ads')
args = parser.parse_args()
analyze_labels(args.path, args.scanned_time, args.duration)
# [END running_app]
# [END full_tutorial]