-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhopper_reinforce_inference.py
55 lines (41 loc) · 1.75 KB
/
hopper_reinforce_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import torch
import gymnasium as gym
from mujoco_reinforce import Policy_Network
import numpy as np
from torch.distributions.normal import Normal
def load_policy_network(weights_path, obs_space_dims, action_space_dims):
policy_net = Policy_Network(obs_space_dims, action_space_dims)
policy_net.load_state_dict(torch.load(weights_path))
policy_net.eval()
return policy_net
def make_inference(policy_net, env_name, render=False):
env = gym.make(env_name, render_mode="human")
obs, info = env.reset(seed=42)
done = False
total_reward = 0
total_steps = 0
while not done:
if render:
env.render()
obs_tensor = torch.tensor(obs, dtype=torch.float32).unsqueeze(0)
action_means, action_stddevs = policy_net(obs_tensor)
action_distribution = Normal(action_means, action_stddevs)
action = action_distribution.sample()
action = action.detach().numpy().flatten()
# action = env.action_space.sample()
obs, reward, terminated, truncated, info = env.step(action)
total_reward += reward
total_steps += 1
done = terminated or truncated
env.close()
return total_reward, total_steps
# Load the trained policy network
env_name = "Hopper-v4" # Replace with the actual environment name
weights_path = "policy_network_weights_hopper.pth"
env = gym.make(env_name, render_mode="human")
obs_space_dims = env.observation_space.shape[0]
action_space_dims = env.action_space.shape[0]
policy_net = load_policy_network(weights_path, obs_space_dims, action_space_dims)
# Make an inference in the environment
total_reward, total_steps = make_inference(policy_net, env_name, render=True)
print(f"Total reward from inference: {total_reward}, Steps: {total_steps}")