-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_process.py
230 lines (189 loc) · 7.13 KB
/
data_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import itertools
import re
import json
import jsonlines
import psutil
import ujson
import numpy as np
import pandas as pd
from transformers import AutoTokenizer
from datasets import load_dataset
bos_token = "<s>"
eos_token = "</s>"
# pretrain
def process_wiki_clean():
with open('./dataset/clean-wikipedia-cn.json', 'r', encoding='utf-8') as f_read:
data = [ujson.loads(line) for line in f_read]
data_len = len(data)
doc_ids = []
for idx, line in enumerate(data):
text = line['response']
text_id = tokenizer(f'{bos_token}{text}{eos_token}').data['input_ids']
if len(text_id) > 5:
doc_ids += text_id
if idx % (int(data_len / 20)) == 0:
print(f"[{idx}/{data_len}] {text}")
arr = np.array(doc_ids, dtype=np.uint16)
with open('./dataset/clean-wikipedia-cn.bin', 'wb') as f:
f.write(arr.tobytes())
# pretrain
def process_other():
data = []
with open('./dataset/alpaca_gpt4_data_zh.json', 'r', encoding='utf-8') as f:
data_ = json.load(f)
data += data_
with open('./dataset/alpaca_data_zh_51k.json', 'r', encoding='utf-8') as f:
data_ = json.load(f)
data += data_
doc_ids = []
for idx, per in enumerate(data):
q = per['instruction']
i = per['input']
a = per['output']
q = q + i
if len(q) < 10 or len(a) < 5:
continue
if len(q) > 256 or len(a) > 256:
continue
text_id = tokenizer(f'{bos_token}{q},{a}{eos_token}').data['input_ids']
if len(text_id) > 5:
doc_ids += text_id
if idx % 50000 == 0:
print(idx, len(data))
arr = np.array(doc_ids, dtype=np.uint16)
with open('./dataset/clean_other.bin', 'wb') as f:
f.write(arr.tobytes())
def process_seq_monkey(chunk_size=50000):
doc_ids = []
chunk_idx = 0
with jsonlines.open('./dataset/mobvoi_seq_monkey_general_open_corpus.jsonl') as reader:
while True:
chunk = list(itertools.islice(reader, chunk_size))
if not chunk:
break
for idx, obj in enumerate(chunk):
try:
content = obj.get('text', '')
if len(content) > 512:
continue
text_id = tokenizer(f'{bos_token}{content}{eos_token}').data['input_ids']
doc_ids += text_id
except UnicodeDecodeError as e:
print(f"Skipping invalid line {chunk_idx * chunk_size + idx + 1}: {e}")
continue
chunk_idx += 1
print(f"Processed chunk {chunk_idx} with {chunk_size} lines")
if len(doc_ids) > 1000000:
arr = np.array(doc_ids, dtype=np.uint16)
with open(f'./dataset/clean_seq_monkey.bin', 'ab') as f:
f.write(arr.tobytes())
doc_ids = []
if doc_ids:
arr = np.array(doc_ids, dtype=np.uint16)
with open(f'./dataset/clean_seq_monkey.bin', 'ab') as f:
f.write(arr.tobytes())
def pretrain_process():
# process_wiki_clean()
process_seq_monkey()
data_path_list = [
# './dataset/clean-wikipedia-cn.bin',
'./dataset/clean_seq_monkey.bin'
]
data_lst = []
for data_path in data_path_list:
with open(data_path, 'rb') as f:
data = np.fromfile(f, dtype=np.uint16)
data_lst.append(data)
arr = np.concatenate(data_lst)
print(arr.shape)
with open('./dataset/pretrain_data.bin', 'wb') as f:
f.write(arr.tobytes())
def sft_process(contain_history=False):
file_name = 'sft_data.csv'
if not contain_history:
file_name = 'sft_data_single.csv'
def chinese_ratio(text):
# 匹配所有中文字符
chinese_chars = re.findall(r'[\u4e00-\u9fff]', text)
# 中文字符数量占比
return len(chinese_chars) / len(text) if text else 0
def process_and_write_data(data):
q_lst, a_lst, history_lst = [], [], []
for per in data:
history, q, a = per['history'], per['q'], per['a']
if (contain_history and not history) or not q or not a:
continue
if len(q) < 10 or len(a) < 5:
continue
if len(q) > 256 or len(a) > 256:
continue
# 判断q和a中中文字符占比是否超过70%
if not (chinese_ratio(q) > 0.9 and chinese_ratio(a) > 0.9):
continue
q_lst.append(q)
a_lst.append(a)
if contain_history:
history_lst.append(history)
else:
history_lst.append([])
# 创建DataFrame并追加到CSV文件
df = pd.DataFrame({'history': history_lst, 'q': q_lst, 'a': a_lst})
df.to_csv(f'./dataset/{file_name}', mode='a', header=False, index=False, lineterminator='\r\n')
chunk_size = 1000 # 每次处理的记录数
data = []
with open(f'./dataset/{file_name}', 'w', encoding='utf-8') as f:
f.write('history,q,a\n')
sft_datasets = ['./dataset/sft_data_zh.jsonl']
if not contain_history:
sft_datasets = ['./dataset/sft_data_zh.jsonl']
for path in sft_datasets:
with jsonlines.open(path) as reader:
for idx, obj in enumerate(reader):
try:
data.append({
'history': obj.get('history', ''),
'q': obj.get('input', '') + obj.get('q', ''),
'a': obj.get('output', '') + obj.get('a', '')
})
if len(data) >= chunk_size:
process_and_write_data(data)
data = []
except jsonlines.InvalidLineError as e:
print(f"Skipping invalid JSON line {idx + 1}: {e}")
continue
if data:
process_and_write_data(data)
data = []
def rl_process():
################
# Dataset
################
dataset_path = ['./dataset/dpo/dpo_zh_demo.json',
'./dataset/dpo/train_data.json',
'./dataset/dpo/huozi_rlhf_data.json', ]
train_dataset = load_dataset('json', data_files=dataset_path)
def process(row):
row["chosen"] = tokenizer.apply_chat_template(row["chosen"], tokenize=False)
row["reject"] = tokenizer.apply_chat_template(row["rejected"], tokenize=False)
return row
ds = train_dataset.map(
process,
load_from_cache_file=False,
)
output_dataset_path = './dataset/dpo/train_data.json'
ds['train'].to_json(output_dataset_path, force_ascii=False, orient='records', lines=True)
if __name__ == "__main__":
tokenizer = AutoTokenizer.from_pretrained('./model/minimind_tokenizer', use_fast=False)
print('tokenizer词表大小:', len(tokenizer))
################
# 1: pretrain
# 2: sft
# 3: RL
################
process_type = 1
if process_type == 1:
pretrain_process()
if process_type == 2:
sft_process(contain_history=False)
if process_type == 3:
rl_process()