-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfun_search.py
310 lines (249 loc) · 13.4 KB
/
fun_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import os
import ast
import subprocess
import sys
import random
import logging
from dotenv import load_dotenv
from openai import OpenAI
from prompt_manager import PromptManager
from fitness_evaluator import FitnessEvaluator, GeneticAlgorithmConfig
load_dotenv()
logging.basicConfig(filename='genetic_algorithm.log', filemode='w', level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
def initialize_openai_client():
try:
client = OpenAI()
return client
except Exception as e:
logging.error(f"Failed to initialize OpenAI client: {e}")
raise
def query_openai_api(client, prompt):
try:
completion = client.chat.completions.create(
model="gpt-4-1106-preview",
response_format={"type": "json_object"},
messages=[
{"role": "system", "content": "You are a helpful assistant designed to output JSON."},
{"role": "user", "content": prompt}
]
)
return completion.choices[0].message.content
except Exception as general_error:
logging.error(f"General error querying OpenAI API: {general_error}")
def install_packages(pip_command):
if not pip_command or pip_command == "None":
return True
packages = pip_command.split(',')
for package in packages:
package = package.strip()
try:
subprocess.check_call([sys.executable, '-m', 'pip', 'install', package])
except subprocess.CalledProcessError as e:
logging.error(f"Error installing package '{package}': {e}")
return False
return True
def tournament_selection(parents, tournament_size=3):
selected_parents = []
for _ in range(len(parents) - 2):
tournament = random.sample(parents, tournament_size)
winner = max(tournament, key=lambda x: x['evaluation_results']['fitness_score'])
selected_parents.append(winner)
return selected_parents
def apply_elitism(parents, number_of_elites=2):
elites = sorted(parents, key=lambda x: x['evaluation_results']['fitness_score'], reverse=True)[:number_of_elites]
return elites
def log_program_details(program_info, title=None):
if title:
logging.info(f"----- {title} -----")
if 'program_code' in program_info:
logging.info(f"Program Code:\n{program_info['program_code']}")
if 'equation' in program_info:
logging.info(f"Equation:\n{program_info['equation']}")
if 'pseudocode' in program_info:
logging.info(f"Pseudocode:\n{program_info['pseudocode']}")
if 'evaluation_results' in program_info:
eval_results = program_info['evaluation_results']
logging.info("Evaluation Results:")
logging.info(f"Time Taken: {eval_results.get('time_taken', 'N/A')}")
logging.info(f"Memory Used: {eval_results.get('memory_used', 'N/A')}")
logging.info(f"Score: {eval_results.get('score', 'N/A')}")
logging.info(f"Fitness Score: {eval_results.get('fitness_score', 'N/A')}")
logging.info(f"Buckets: {eval_results.get('buckets', 'N/A')}")
if 'pip_command' in program_info and program_info['pip_command'] not in ["None", None, ""]:
install_packages(program_info['pip_command'])
def query_and_log_initial_data(prompt_manager, client, fitness_evaluator, ga_config):
try:
initial_prompt = prompt_manager.get_number_prompt()
response_0 = query_openai_api(client, initial_prompt)
response_data_0 = ast.literal_eval(response_0)
numberList = response_data_0['numberList']
bucketSize = response_data_0['bucketSize']
logging.info(f"Number List: {numberList}")
logging.info(f"Bucket Size: {bucketSize}")
master_prompt = prompt_manager.get_master_prompt(numberList, bucketSize)
response_1 = query_openai_api(client, master_prompt)
response_data_1 = ast.literal_eval(response_1)
log_program_details(response_data_1, "Master Program Details")
if 'pip_command' in response_data_1 and response_data_1['pip_command'] not in ["None", None, ""]:
install_packages(response_data_1['pip_command'])
master_results = fitness_evaluator.evaluate_algorithm(response_data_1['program_code'], numberList, bucketSize, weights={'time': 0.3, 'memory': 0.2, 'score': 0.5})
ga_config.add_result(master_results)
log_program_details(master_results, "Master Results Evaluation")
return {
'numberList': numberList,
'bucketSize': bucketSize,
'program_code': response_data_1['program_code'],
'equation': response_data_1.get('equation', ''),
'pseudocode': response_data_1.get('pseudocode', ''),
**master_results
}
except Exception as e:
logging.error("An error occurred: ", exc_info=True)
def generate_parents(prompt_manager, client, fitness_evaluator, ga_config, master_program_details):
parents = []
for individual in range(ga_config.population_size):
valid_algorithm = False
retries = 0
max_retries = 3
last_program_code = None
last_error_message = None
while not valid_algorithm and retries < max_retries:
try:
parent_prompt = prompt_manager.get_parent_prompt(
master_program_details['program_code'],
master_program_details['equation'],
master_program_details['pseudocode'],
master_program_details['buckets'],
master_program_details['fitness_score'],
master_program_details['numberList'],
master_program_details['bucketSize']
)
full_prompt = prompt_manager.get_repeat_prompt(last_error_message, last_program_code) + parent_prompt if retries > 0 else parent_prompt
response = query_openai_api(client, full_prompt)
response_data = ast.literal_eval(response)
parent_program_code = response_data.get('program_code')
last_program_code = parent_program_code
print
if not parent_program_code:
raise ValueError("No program code generated.")
if response_data.get('pip_command') and response_data['pip_command'] != "None":
install_packages(response_data['pip_command'])
parent_results = fitness_evaluator.evaluate_algorithm(
parent_program_code,
master_program_details['numberList'],
master_program_details['bucketSize'],
weights={'time': 0.3, 'memory': 0.2, 'score': 0.5}
)
if parent_results is None or not parent_results.get('buckets'):
raise ValueError("Failed to evaluate algorithm or no buckets generated.")
unique = ga_config.is_iteration_unique(parent_results)
valid_algorithm = unique and parent_results is not None
except ValueError as ve:
logging.warning(f"Validation error during parent generation: {ve}. Retrying...")
retries += 1
valid_algorithm = False
except Exception as e:
last_error_message = str(e)
logging.error(f"An error occurred during parent generation: {e}. Retrying...")
retries += 1
valid_algorithm = False
if valid_algorithm:
parent_info = {
'program_code': parent_program_code,
'evaluation_results': parent_results,
'equation': response_data.get('equation'),
'pseudocode': response_data.get('pseudocode')
}
ga_config.add_result(parent_results)
parents.append(parent_info)
log_program_details(parent_info, f"Parent {individual + 1} Details")
else:
logging.error(f"Failed to generate a valid parent after {max_retries} attempts for individual {individual + 1}.")
return parents
def generate_children(prompt_manager, client, fitness_evaluator, parents, numberList, bucketSize, elite_count=2, tournament_size=3):
elite_parents = apply_elitism(parents, number_of_elites=elite_count)
tournament_parents = tournament_selection(parents, tournament_size=tournament_size)
children = []
for i in range(2):
parent1, parent2 = elite_parents[i], tournament_parents[i]
log_program_details(parent1, f"Crossover Details for Child {i + 1} - Elite Parent Details")
log_program_details(parent2, "Tournament Parent Details")
crossover_prompt = prompt_manager.get_crossover_prompt(
parent1['program_code'], parent1['equation'], parent1['pseudocode'], parent1['evaluation_results']['buckets'], parent1['evaluation_results']['fitness_score'],
parent2['program_code'], parent2['equation'], parent2['pseudocode'], parent2['evaluation_results']['buckets'], parent2['evaluation_results']['fitness_score'],
numberList, bucketSize
)
response = query_openai_api(client, crossover_prompt)
response_data = ast.literal_eval(response)
child_program_code = response_data.get('program_code')
if child_program_code:
if response_data.get('pip_command') and response_data['pip_command'] != "None":
install_packages(response_data['pip_command'])
child_results = fitness_evaluator.evaluate_algorithm(
child_program_code, numberList, bucketSize, weights={'time': 0.3, 'memory': 0.2, 'score': 0.5}
)
if child_results:
child_info = {
'program_code': child_program_code,
'evaluation_results': child_results,
'equation': response_data.get('equation'),
'pseudocode': response_data.get('pseudocode')
}
children.append(child_info)
log_program_details(child_info, f"Child {i + 1} Details")
else:
logging.error(f"Failed to evaluate Child {i + 1}.")
else:
logging.error(f"Failed to generate Child {i + 1} program code.")
top_children = sorted(children, key=lambda x: x['evaluation_results']['fitness_score'], reverse=True)[:2]
logging.info(f"Top Children Selected for Next Generation: {top_children}")
return top_children
def mutate_and_update_population(prompt_manager, client, fitness_evaluator, ga_config, parents, children, numberList, bucketSize):
mutated_children = []
for child in children:
mutation_prompt = prompt_manager.get_mutation_prompt(
child['program_code'], child['equation'], child['pseudocode'],
child['evaluation_results']['buckets'], child['evaluation_results']['fitness_score'],
numberList, bucketSize
)
response = query_openai_api(client, mutation_prompt)
response_data = ast.literal_eval(response)
if response_data.get('pip_command') and response_data['pip_command'] != "None":
install_packages(response_data['pip_command'])
mutated_child_results = fitness_evaluator.evaluate_algorithm(
response_data['program_code'], numberList, bucketSize, weights={'time': 0.3, 'memory': 0.2, 'score': 0.5}
)
mutated_child_info = {
'program_code': response_data.get('program_code'),
'evaluation_results': mutated_child_results,
'equation': response_data.get('equation'),
'pseudocode': response_data.get('pseudocode')
}
mutated_children.append(mutated_child_info)
combined_population = parents + mutated_children
combined_population.sort(key=lambda x: x['evaluation_results']['fitness_score'], reverse=True)
new_population = combined_population[:ga_config.population_size]
return new_population
def main():
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
client = initialize_openai_client()
prompt_manager = PromptManager()
fitness_evaluator = FitnessEvaluator()
ga_config = GeneticAlgorithmConfig(generations=1, population_size=6)
try:
master_program_details = query_and_log_initial_data(prompt_manager, client, fitness_evaluator, ga_config)
population = generate_parents(prompt_manager, client, fitness_evaluator, ga_config, master_program_details)
for _ in range(ga_config.generations):
children = generate_children(prompt_manager, client, fitness_evaluator, population, master_program_details['numberList'], master_program_details['bucketSize'])
population = mutate_and_update_population(prompt_manager, client, fitness_evaluator, ga_config, population, children, master_program_details['numberList'], master_program_details['bucketSize'])
best_performer = max(population, key=lambda x: x['evaluation_results']['fitness_score'])
logging.info("Best Performing Algorithm:")
logging.info(f"Program Code:\n{best_performer['program_code']}")
logging.info(f"Equation:\n{best_performer['equation']}")
logging.info(f"Pseudocode:\n{best_performer['pseudocode']}")
logging.info(f"Fitness Score: {best_performer['evaluation_results']['fitness_score']}")
except Exception as e:
logging.error("An error occurred in the main process: ", exc_info=True)
if __name__ == "__main__":
main()