forked from google-deepmind/learning-to-learn
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpreprocess.py
70 lines (55 loc) · 2.28 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# Copyright 2016 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Learning 2 Learn preprocessing modules."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import sonnet as snt
import tensorflow as tf
class Clamp(snt.AbstractModule):
def __init__(self, min_value=None, max_value=None, name="clamp"):
super(Clamp, self).__init__(name=name)
self._min = min_value
self._max = max_value
def _build(self, inputs):
output = inputs
if self._min is not None:
output = tf.maximum(output, self._min)
if self._max is not None:
output = tf.minimum(output, self._max)
return output
class LogAndSign(snt.AbstractModule):
"""Log and sign preprocessing.
As described in https://arxiv.org/pdf/1606.04474v1.pdf (Appendix A).
"""
def __init__(self, k, name="preprocess_log"):
super(LogAndSign, self).__init__(name=name)
self._k = k
def _build(self, gradients):
"""Connects the LogAndSign module into the graph.
Args:
gradients: `Tensor` of gradients with shape `[d_1, ..., d_n]`.
Returns:
`Tensor` with shape `[d_1, ..., d_n-1, 2 * d_n]`. The first `d_n` elements
along the nth dimension correspond to the log output and the remaining
`d_n` elements to the sign output.
"""
eps = np.finfo(gradients.dtype.as_numpy_dtype).eps
ndims = gradients.get_shape().ndims
log = tf.log(tf.abs(gradients) + eps)
clamped_log = Clamp(min_value=-1.0)(log / self._k) # pylint: disable=not-callable
sign = Clamp(min_value=-1.0, max_value=1.0)(gradients * np.exp(self._k)) # pylint: disable=not-callable
return tf.concat([clamped_log, sign], ndims - 1)