-
Notifications
You must be signed in to change notification settings - Fork 1.9k
/
lda_core.cc
1350 lines (1145 loc) · 37.9 KB
/
lda_core.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright (c) by respective owners including Yahoo!, Microsoft, and
// individual contributors. All rights reserved. Released under a BSD (revised)
// license as described in the file LICENSE.
#ifdef _WIN32
# pragma warning(disable : 4996) // generated by inner_product use
#endif
#include <fstream>
#include <vector>
#include <queue>
#include <algorithm>
#include <numeric>
#include <cmath>
#include "correctedMath.h"
#include "vw_versions.h"
#include "vw.h"
#include "mwt.h"
#include <cstring>
#include <cstdio>
#include <cassert>
#include "no_label.h"
#include "gd.h"
#include "rand48.h"
#include "reductions.h"
#include "array_parameters.h"
#include "vw_exception.h"
#include "io/logger.h"
#include "shared_data.h"
#include <boost/version.hpp>
#include <boost/math/special_functions/digamma.hpp>
#include <boost/math/special_functions/gamma.hpp>
#if BOOST_VERSION >= 105600
# include <boost/align/is_aligned.hpp>
#endif
using namespace VW::config;
namespace logger = VW::io::logger;
enum lda_math_mode
{
USE_SIMD,
USE_PRECISE,
USE_FAST_APPROX
};
class index_feature
{
public:
uint32_t document;
feature f;
bool operator<(const index_feature b) const { return f.weight_index < b.f.weight_index; }
};
struct lda
{
size_t topics;
float lda_alpha;
float lda_rho;
float lda_D;
float lda_epsilon;
size_t minibatch;
lda_math_mode mmode;
size_t finish_example_count;
v_array<float> Elogtheta;
v_array<float> decay_levels;
v_array<float> total_new;
v_array<example *> examples;
v_array<float> total_lambda;
v_array<int> doc_lengths;
v_array<float> digammas;
v_array<float> v;
std::vector<index_feature> sorted_features;
bool compute_coherence_metrics;
// size by 1 << bits
std::vector<uint32_t> feature_counts;
std::vector<std::vector<size_t>> feature_to_example_map;
bool total_lambda_init;
double example_t;
vw *all; // regressor, lda
static constexpr float underflow_threshold = 1.0e-10f;
inline float digamma(float x);
inline float lgamma(float x);
inline float powf(float x, float p);
inline void expdigammify(vw &all, float *gamma);
inline void expdigammify_2(vw &all, float *gamma, float *norm);
};
// #define VW_NO_INLINE_SIMD
namespace
{
inline bool is_aligned16(void *ptr)
{
#if BOOST_VERSION >= 105600
return boost::alignment::is_aligned(16, ptr);
#else
return ((reinterpret_cast<uintptr_t>(ptr) & 0x0f) == 0);
#endif
}
} // namespace
namespace ldamath
{
inline float fastlog2(float x)
{
uint32_t mx;
memcpy(&mx, &x, sizeof(uint32_t));
mx = (mx & 0x007FFFFF) | (0x7e << 23);
float mx_f;
memcpy(&mx_f, &mx, sizeof(float));
uint32_t vx;
memcpy(&vx, &x, sizeof(uint32_t));
float y = static_cast<float>(vx);
y *= 1.0f / (float)(1 << 23);
return y - 124.22544637f - 1.498030302f * mx_f - 1.72587999f / (0.3520887068f + mx_f);
}
inline float fastlog(float x) { return 0.69314718f * fastlog2(x); }
inline float fastpow2(float p)
{
float offset = (p < 0) * 1.0f;
float clipp = (p < -126.0) ? -126.0f : p;
int w = (int)clipp;
float z = clipp - w + offset;
uint32_t approx = (uint32_t)((1 << 23) * (clipp + 121.2740838f + 27.7280233f / (4.84252568f - z) - 1.49012907f * z));
float v;
memcpy(&v, &approx, sizeof(uint32_t));
return v;
}
inline float fastexp(float p) { return fastpow2(1.442695040f * p); }
inline float fastpow(float x, float p) { return fastpow2(p * fastlog2(x)); }
inline float fastlgamma(float x)
{
float logterm = fastlog(x * (1.0f + x) * (2.0f + x));
float xp3 = 3.0f + x;
return -2.081061466f - x + 0.0833333f / xp3 - logterm + (2.5f + x) * fastlog(xp3);
}
inline float fastdigamma(float x)
{
float twopx = 2.0f + x;
float logterm = fastlog(twopx);
return -(1.0f + 2.0f * x) / (x * (1.0f + x)) - (13.0f + 6.0f * x) / (12.0f * twopx * twopx) + logterm;
}
#if !defined(VW_NO_INLINE_SIMD)
# if defined(__SSE2__) || defined(__SSE3__) || defined(__SSE4_1__)
// Include headers for the various SSE versions:
# if defined(__SSE2__)
# include <emmintrin.h>
# endif
# if defined(__SSE3__)
# include <tmmintrin.h>
# endif
# if defined(__SSE4_1__)
# include <smmintrin.h>
# endif
# define HAVE_SIMD_MATHMODE
typedef __m128 v4sf;
typedef __m128i v4si;
inline v4sf v4si_to_v4sf(v4si x) { return _mm_cvtepi32_ps(x); }
inline v4si v4sf_to_v4si(v4sf x) { return _mm_cvttps_epi32(x); }
// Extract v[idx]
template <const int idx>
float v4sf_index(const v4sf x)
{
# if defined(__SSE4_1__)
float ret;
uint32_t val;
val = _mm_extract_ps(x, idx);
// Portably convert uint32_t bit pattern to float. Optimizers will generally
// make this disappear.
memcpy(&ret, &val, sizeof(uint32_t));
return ret;
# else
return _mm_cvtss_f32(_mm_shuffle_ps(x, x, _MM_SHUFFLE(idx, idx, idx, idx)));
# endif
}
// Specialization for the 0'th element
template <>
float v4sf_index<0>(const v4sf x)
{
return _mm_cvtss_f32(x);
}
inline v4sf v4sfl(const float x) { return _mm_set1_ps(x); }
inline v4si v4sil(const uint32_t x) { return _mm_set1_epi32(x); }
# ifdef _WIN32
inline __m128 operator+(const __m128 a, const __m128 b) { return _mm_add_ps(a, b); }
inline __m128 operator-(const __m128 a, const __m128 b) { return _mm_sub_ps(a, b); }
inline __m128 operator*(const __m128 a, const __m128 b) { return _mm_mul_ps(a, b); }
inline __m128 operator/(const __m128 a, const __m128 b) { return _mm_div_ps(a, b); }
# endif
inline v4sf vfastpow2(const v4sf p)
{
v4sf ltzero = _mm_cmplt_ps(p, v4sfl(0.0f));
v4sf offset = _mm_and_ps(ltzero, v4sfl(1.0f));
v4sf lt126 = _mm_cmplt_ps(p, v4sfl(-126.0f));
v4sf clipp = _mm_andnot_ps(lt126, p) + _mm_and_ps(lt126, v4sfl(-126.0f));
v4si w = v4sf_to_v4si(clipp);
v4sf z = clipp - v4si_to_v4sf(w) + offset;
const v4sf c_121_2740838 = v4sfl(121.2740838f);
const v4sf c_27_7280233 = v4sfl(27.7280233f);
const v4sf c_4_84252568 = v4sfl(4.84252568f);
const v4sf c_1_49012907 = v4sfl(1.49012907f);
v4sf v = v4sfl(1 << 23) * (clipp + c_121_2740838 + c_27_7280233 / (c_4_84252568 - z) - c_1_49012907 * z);
return _mm_castsi128_ps(v4sf_to_v4si(v));
}
inline v4sf vfastexp(const v4sf p)
{
const v4sf c_invlog_2 = v4sfl(1.442695040f);
return vfastpow2(c_invlog_2 * p);
}
inline v4sf vfastlog2(v4sf x)
{
v4si vx_i = _mm_castps_si128(x);
v4sf mx_f = _mm_castsi128_ps(_mm_or_si128(_mm_and_si128(vx_i, v4sil(0x007FFFFF)), v4sil(0x3f000000)));
v4sf y = v4si_to_v4sf(vx_i) * v4sfl(1.1920928955078125e-7f);
const v4sf c_124_22551499 = v4sfl(124.22551499f);
const v4sf c_1_498030302 = v4sfl(1.498030302f);
const v4sf c_1_725877999 = v4sfl(1.72587999f);
const v4sf c_0_3520087068 = v4sfl(0.3520887068f);
return y - c_124_22551499 - c_1_498030302 * mx_f - c_1_725877999 / (c_0_3520087068 + mx_f);
}
inline v4sf vfastlog(v4sf x)
{
const v4sf c_0_69314718 = v4sfl(0.69314718f);
return c_0_69314718 * vfastlog2(x);
}
inline v4sf vfastdigamma(v4sf x)
{
v4sf twopx = v4sfl(2.0f) + x;
v4sf logterm = vfastlog(twopx);
return (v4sfl(-48.0f) + x * (v4sfl(-157.0f) + x * (v4sfl(-127.0f) - v4sfl(30.0f) * x))) /
(v4sfl(12.0f) * x * (v4sfl(1.0f) + x) * twopx * twopx) +
logterm;
}
void vexpdigammify(vw &all, float *gamma, const float underflow_threshold)
{
float extra_sum = 0.0f;
v4sf sum = v4sfl(0.0f);
float *fp;
const float *fpend = gamma + all.lda;
// Iterate through the initial part of the array that isn't 128-bit SIMD
// aligned.
for (fp = gamma; fp < fpend && !is_aligned16(fp); ++fp)
{
extra_sum += *fp;
*fp = fastdigamma(*fp);
}
// Rip through the aligned portion...
for (; is_aligned16(fp) && fp + 4 < fpend; fp += 4)
{
v4sf arg = _mm_load_ps(fp);
sum = sum + arg;
arg = vfastdigamma(arg);
_mm_store_ps(fp, arg);
}
for (; fp < fpend; ++fp)
{
extra_sum += *fp;
*fp = fastdigamma(*fp);
}
# if defined(__SSE3__) || defined(__SSE4_1__)
// Do two horizontal adds on sum, extract the total from the 0 element:
sum = _mm_hadd_ps(sum, sum);
sum = _mm_hadd_ps(sum, sum);
extra_sum += v4sf_index<0>(sum);
# else
extra_sum += v4sf_index<0>(sum) + v4sf_index<1>(sum) + v4sf_index<2>(sum) + v4sf_index<3>(sum);
# endif
extra_sum = fastdigamma(extra_sum);
sum = v4sfl(extra_sum);
for (fp = gamma; fp < fpend && !is_aligned16(fp); ++fp) { *fp = fmax(underflow_threshold, fastexp(*fp - extra_sum)); }
for (; is_aligned16(fp) && fp + 4 < fpend; fp += 4)
{
v4sf arg = _mm_load_ps(fp);
arg = arg - sum;
arg = vfastexp(arg);
arg = _mm_max_ps(v4sfl(underflow_threshold), arg);
_mm_store_ps(fp, arg);
}
for (; fp < fpend; ++fp) { *fp = fmax(underflow_threshold, fastexp(*fp - extra_sum)); }
}
void vexpdigammify_2(vw &all, float *gamma, const float *norm, const float underflow_threshold)
{
float *fp = gamma;
const float *np;
const float *fpend = gamma + all.lda;
for (np = norm; fp < fpend && !is_aligned16(fp); ++fp, ++np)
*fp = fmax(underflow_threshold, fastexp(fastdigamma(*fp) - *np));
for (; is_aligned16(fp) && fp + 4 < fpend; fp += 4, np += 4)
{
v4sf arg = _mm_load_ps(fp);
arg = vfastdigamma(arg);
v4sf vnorm = _mm_loadu_ps(np);
arg = arg - vnorm;
arg = vfastexp(arg);
arg = _mm_max_ps(v4sfl(underflow_threshold), arg);
_mm_store_ps(fp, arg);
}
for (; fp < fpend; ++fp, ++np) *fp = fmax(underflow_threshold, fastexp(fastdigamma(*fp) - *np));
}
# else
// PLACEHOLDER for future ARM NEON code
// Also remember to define HAVE_SIMD_MATHMODE
# endif
#endif // !VW_NO_INLINE_SIMD
// Templates for common code shared between the three math modes (SIMD, fast approximations
// and accurate).
//
// The generic template takes a type and a specialization flag, mtype.
//
// mtype == USE_PRECISE: Use the accurate computation for lgamma, digamma.
// mtype == USE_FAST_APPROX: Use the fast approximations for lgamma, digamma.
// mtype == USE_SIMD: Use CPU SIMD instruction
//
// The generic template is specialized for the particular accuracy setting.
// Log gamma:
template <typename T, const lda_math_mode mtype>
inline T lgamma(T /* x */)
{
BOOST_STATIC_ASSERT_MSG(true, "ldamath::lgamma is not defined for this type and math mode.");
}
// Digamma:
template <typename T, const lda_math_mode mtype>
inline T digamma(T /* x */)
{
BOOST_STATIC_ASSERT_MSG(true, "ldamath::digamma is not defined for this type and math mode.");
}
// Exponential
template <typename T, lda_math_mode mtype>
inline T exponential(T /* x */)
{
BOOST_STATIC_ASSERT_MSG(true, "ldamath::exponential is not defined for this type and math mode.");
}
// Powf
template <typename T, lda_math_mode mtype>
inline T powf(T /* x */, T /* p */)
{
BOOST_STATIC_ASSERT_MSG(true, "ldamath::powf is not defined for this type and math mode.");
}
// High accuracy float specializations:
template <>
inline float lgamma<float, USE_PRECISE>(float x)
{
return boost::math::lgamma(x);
}
template <>
inline float digamma<float, USE_PRECISE>(float x)
{
return boost::math::digamma(x);
}
template <>
inline float exponential<float, USE_PRECISE>(float x)
{
return correctedExp(x);
}
template <>
inline float powf<float, USE_PRECISE>(float x, float p)
{
return std::pow(x, p);
}
// Fast approximation float specializations:
template <>
inline float lgamma<float, USE_FAST_APPROX>(float x)
{
return fastlgamma(x);
}
template <>
inline float digamma<float, USE_FAST_APPROX>(float x)
{
return fastdigamma(x);
}
template <>
inline float exponential<float, USE_FAST_APPROX>(float x)
{
return fastexp(x);
}
template <>
inline float powf<float, USE_FAST_APPROX>(float x, float p)
{
return fastpow(x, p);
}
// SIMD specializations:
template <>
inline float lgamma<float, USE_SIMD>(float x)
{
return lgamma<float, USE_FAST_APPROX>(x);
}
template <>
inline float digamma<float, USE_SIMD>(float x)
{
return digamma<float, USE_FAST_APPROX>(x);
}
template <>
inline float exponential<float, USE_SIMD>(float x)
{
return exponential<float, USE_FAST_APPROX>(x);
}
template <>
inline float powf<float, USE_SIMD>(float x, float p)
{
return powf<float, USE_FAST_APPROX>(x, p);
}
template <typename T, const lda_math_mode mtype>
inline void expdigammify(vw &all, T *gamma, T threshold, T initial)
{
T sum = digamma<T, mtype>(std::accumulate(gamma, gamma + all.lda, initial));
std::transform(gamma, gamma + all.lda, gamma,
[sum, threshold](T g) { return fmax(threshold, exponential<T, mtype>(digamma<T, mtype>(g) - sum)); });
}
template <>
inline void expdigammify<float, USE_SIMD>(vw &all, float *gamma, float threshold, float)
{
#if defined(HAVE_SIMD_MATHMODE)
vexpdigammify(all, gamma, threshold);
#else
// Do something sensible if SIMD math isn't available:
expdigammify<float, USE_FAST_APPROX>(all, gamma, threshold, 0.0);
#endif
}
template <typename T, const lda_math_mode mtype>
inline void expdigammify_2(vw &all, float *gamma, T *norm, const T threshold)
{
std::transform(gamma, gamma + all.lda, norm, gamma,
[threshold](float g, float n) { return fmax(threshold, exponential<T, mtype>(digamma<T, mtype>(g) - n)); });
}
template <>
inline void expdigammify_2<float, USE_SIMD>(vw &all, float *gamma, float *norm, const float threshold)
{
#if defined(HAVE_SIMD_MATHMODE)
vexpdigammify_2(all, gamma, norm, threshold);
#else
// Do something sensible if SIMD math isn't available:
expdigammify_2<float, USE_FAST_APPROX>(all, gamma, norm, threshold);
#endif
}
} // namespace ldamath
float lda::digamma(float x)
{
switch (mmode)
{
case USE_FAST_APPROX:
return ldamath::digamma<float, USE_FAST_APPROX>(x);
case USE_PRECISE:
return ldamath::digamma<float, USE_PRECISE>(x);
case USE_SIMD:
return ldamath::digamma<float, USE_SIMD>(x);
default:
// Should not happen.
logger::errlog_critical("lda::digamma: Trampled or invalid math mode, aborting");
abort();
return 0.0f;
}
}
float lda::lgamma(float x)
{
switch (mmode)
{
case USE_FAST_APPROX:
return ldamath::lgamma<float, USE_FAST_APPROX>(x);
case USE_PRECISE:
return ldamath::lgamma<float, USE_PRECISE>(x);
case USE_SIMD:
return ldamath::lgamma<float, USE_SIMD>(x);
default:
logger::errlog_critical("lda::lgamma: Trampled or invalid math mode, aborting");
abort();
return 0.0f;
}
}
float lda::powf(float x, float p)
{
switch (mmode)
{
case USE_FAST_APPROX:
return ldamath::powf<float, USE_FAST_APPROX>(x, p);
case USE_PRECISE:
return ldamath::powf<float, USE_PRECISE>(x, p);
case USE_SIMD:
return ldamath::powf<float, USE_SIMD>(x, p);
default:
logger::errlog_critical("lda::powf: Trampled or invalid math mode, aborting");
abort();
return 0.0f;
}
}
void lda::expdigammify(vw &all_, float *gamma)
{
switch (mmode)
{
case USE_FAST_APPROX:
ldamath::expdigammify<float, USE_FAST_APPROX>(all_, gamma, underflow_threshold, 0.0f);
break;
case USE_PRECISE:
ldamath::expdigammify<float, USE_PRECISE>(all_, gamma, underflow_threshold, 0.0f);
break;
case USE_SIMD:
ldamath::expdigammify<float, USE_SIMD>(all_, gamma, underflow_threshold, 0.0f);
break;
default:
logger::errlog_critical("lda::expdigammify: Trampled or invalid math mode, aborting");
abort();
}
}
void lda::expdigammify_2(vw &all_, float *gamma, float *norm)
{
switch (mmode)
{
case USE_FAST_APPROX:
ldamath::expdigammify_2<float, USE_FAST_APPROX>(all_, gamma, norm, underflow_threshold);
break;
case USE_PRECISE:
ldamath::expdigammify_2<float, USE_PRECISE>(all_, gamma, norm, underflow_threshold);
break;
case USE_SIMD:
ldamath::expdigammify_2<float, USE_SIMD>(all_, gamma, norm, underflow_threshold);
break;
default:
logger::errlog_critical("lda::expdigammify_2: Trampled or invalid math mode, aborting");
abort();
}
}
static inline float average_diff(vw &all, float *oldgamma, float *newgamma)
{
float sum;
float normalizer;
// This warps the normal sense of "inner product", but it accomplishes the same
// thing as the "plain old" for loop. clang does a good job of reducing the
// common subexpressions.
sum = std::inner_product(
oldgamma, oldgamma + all.lda, newgamma, 0.0f, [](float accum, float absdiff) { return accum + absdiff; },
[](float old_g, float new_g) { return std::abs(old_g - new_g); });
normalizer = std::accumulate(newgamma, newgamma + all.lda, 0.0f);
return sum / normalizer;
}
// Returns E_q[log p(\theta)] - E_q[log q(\theta)].
float theta_kl(lda &l, v_array<float> &Elogtheta, float *gamma)
{
float gammasum = 0;
Elogtheta.clear();
for (size_t k = 0; k < l.topics; k++)
{
Elogtheta.push_back(l.digamma(gamma[k]));
gammasum += gamma[k];
}
float digammasum = l.digamma(gammasum);
gammasum = l.lgamma(gammasum);
float kl = -(l.topics * l.lgamma(l.lda_alpha));
kl += l.lgamma(l.lda_alpha * l.topics) - gammasum;
for (size_t k = 0; k < l.topics; k++)
{
Elogtheta[k] -= digammasum;
kl += (l.lda_alpha - gamma[k]) * Elogtheta[k];
kl += l.lgamma(gamma[k]);
}
return kl;
}
static inline float find_cw(lda &l, float *u_for_w, float *v)
{
return 1.0f / std::inner_product(u_for_w, u_for_w + l.topics, v, 0.0f);
}
namespace
{
// Effectively, these are static and not visible outside the compilation unit.
v_array<float> new_gamma = v_init<float>();
v_array<float> old_gamma = v_init<float>();
} // namespace
// Returns an estimate of the part of the variational bound that
// doesn't have to do with beta for the entire corpus for the current
// setting of lambda based on the document passed in. The value is
// divided by the total number of words in the document This can be
// used as a (possibly very noisy) estimate of held-out likelihood.
float lda_loop(lda &l, v_array<float> &Elogtheta, float *v, example *ec, float)
{
parameters &weights = l.all->weights;
new_gamma.clear();
old_gamma.clear();
for (size_t i = 0; i < l.topics; i++)
{
new_gamma.push_back(1.f);
old_gamma.push_back(0.f);
}
size_t num_words = 0;
for (features &fs : *ec) num_words += fs.size();
float xc_w = 0;
float score = 0;
float doc_length = 0;
do
{
memcpy(v, new_gamma.begin(), sizeof(float) * l.topics);
l.expdigammify(*l.all, v);
memcpy(old_gamma.begin(), new_gamma.begin(), sizeof(float) * l.topics);
memset(new_gamma.begin(), 0, sizeof(float) * l.topics);
score = 0;
size_t word_count = 0;
doc_length = 0;
for (features &fs : *ec)
{
for (features::iterator &f : fs)
{
float *u_for_w = &(weights[f.index()]) + l.topics + 1;
float c_w = find_cw(l, u_for_w, v);
xc_w = c_w * f.value();
score += -f.value() * log(c_w);
size_t max_k = l.topics;
for (size_t k = 0; k < max_k; k++, ++u_for_w) new_gamma[k] += xc_w * *u_for_w;
word_count++;
doc_length += f.value();
}
}
for (size_t k = 0; k < l.topics; k++) new_gamma[k] = new_gamma[k] * v[k] + l.lda_alpha;
} while (average_diff(*l.all, old_gamma.begin(), new_gamma.begin()) > l.lda_epsilon);
ec->pred.scalars.clear();
ec->pred.scalars.resize_but_with_stl_behavior(l.topics);
memcpy(ec->pred.scalars.begin(), new_gamma.begin(), l.topics * sizeof(float));
score += theta_kl(l, Elogtheta, new_gamma.begin());
return score / doc_length;
}
size_t next_pow2(size_t x)
{
int i = 0;
x = x > 0 ? x - 1 : 0;
while (x > 0)
{
x >>= 1;
i++;
}
return ((size_t)1) << i;
}
struct initial_weights
{
weight _initial;
weight _initial_random;
bool _random;
uint32_t _lda;
uint32_t _stride;
};
void save_load(lda &l, io_buf &model_file, bool read, bool text)
{
vw &all = *(l.all);
uint64_t length = (uint64_t)1 << all.num_bits;
if (read)
{
initialize_regressor(all);
initial_weights init{all.initial_t, static_cast<float>(l.lda_D / all.lda / all.length() * 200.f),
all.random_weights, all.lda, all.weights.stride()};
auto initial_lda_weight_initializer = [init](weight *weights, uint64_t index) {
uint32_t lda = init._lda;
weight initial_random = init._initial_random;
if (init._random)
{
for (size_t i = 0; i != lda; ++i, ++index)
{ weights[i] = static_cast<float>(-std::log(merand48(index) + 1e-6) + 1.0f) * initial_random; }
}
weights[lda] = init._initial;
};
all.weights.set_default(initial_lda_weight_initializer);
}
if (model_file.num_files() != 0)
{
uint64_t i = 0;
std::stringstream msg;
size_t brw = 1;
do
{
brw = 0;
size_t K = all.lda;
if (!read && text) msg << i << " ";
if (!read || all.model_file_ver >= VERSION_FILE_WITH_HEADER_ID)
brw += bin_text_read_write_fixed(model_file, (char *)&i, sizeof(i), "", read, msg, text);
else
{
// support 32bit build models
uint32_t j;
brw += bin_text_read_write_fixed(model_file, (char *)&j, sizeof(j), "", read, msg, text);
i = j;
}
if (brw != 0)
{
weight *w = &(all.weights.strided_index(i));
for (uint64_t k = 0; k < K; k++)
{
weight *v = w + k;
if (!read && text) msg << *v + l.lda_rho << " ";
brw += bin_text_read_write_fixed(model_file, (char *)v, sizeof(*v), "", read, msg, text);
}
}
if (text)
{
if (!read) msg << "\n";
brw += bin_text_read_write_fixed(model_file, nullptr, 0, "", read, msg, text);
}
if (!read) ++i;
} while ((!read && i < length) || (read && brw > 0));
}
}
void return_example(vw &all, example &ec)
{
all.sd->update(ec.test_only, true, ec.loss, ec.weight, ec.num_features);
for (auto &sink : all.final_prediction_sink) { MWT::print_scalars(sink.get(), ec.pred.scalars, ec.tag); }
if (all.sd->weighted_examples() >= all.sd->dump_interval && !all.logger.quiet)
all.sd->print_update(*all.trace_message, all.holdout_set_off, all.current_pass, "none", 0, ec.num_features,
all.progress_add, all.progress_arg);
VW::finish_example(all, ec);
}
void learn_batch(lda &l)
{
parameters &weights = l.all->weights;
assert(l.finish_example_count == (l.examples.size() - 1));
if (l.sorted_features.empty()) // FAST-PASS for real "true"
{
// This can happen when the socket connection is dropped by the client.
// If l.sorted_features is empty, then l.sorted_features[0] does not
// exist, so we should not try to take its address in the beginning of
// the for loops down there. Since it seems that there's not much to
// do in this case, we just return.
for (size_t d = 0; d < l.examples.size(); d++)
{
l.examples[d]->pred.scalars.clear();
l.examples[d]->pred.scalars.resize_but_with_stl_behavior(l.topics);
memset(l.examples[d]->pred.scalars.begin(), 0, l.topics * sizeof(float));
l.examples[d]->pred.scalars.clear();
if (l.finish_example_count > 0)
{
return_example(*l.all, *l.examples[d]);
l.finish_example_count--;
}
}
l.examples.clear();
return;
}
float eta = -1;
float minuseta = -1;
if (l.total_lambda.empty())
{
for (size_t k = 0; k < l.all->lda; k++) l.total_lambda.push_back(0.f);
// This part does not work with sparse parameters
size_t stride = weights.stride();
for (size_t i = 0; i <= weights.mask(); i += stride)
{
weight *w = &(weights[i]);
for (size_t k = 0; k < l.all->lda; k++) l.total_lambda[k] += w[k];
}
}
l.example_t++;
l.total_new.clear();
for (size_t k = 0; k < l.all->lda; k++) l.total_new.push_back(0.f);
size_t batch_size = l.examples.size();
sort(l.sorted_features.begin(), l.sorted_features.end());
eta = l.all->eta * l.powf((float)l.example_t, -l.all->power_t);
minuseta = 1.0f - eta;
eta *= l.lda_D / batch_size;
l.decay_levels.push_back(l.decay_levels.back() + log(minuseta));
l.digammas.clear();
float additional = (float)(l.all->length()) * l.lda_rho;
for (size_t i = 0; i < l.all->lda; i++) l.digammas.push_back(l.digamma(l.total_lambda[i] + additional));
auto last_weight_index = std::numeric_limits<uint64_t>::max();
for (index_feature *s = &l.sorted_features[0]; s <= &l.sorted_features.back(); s++)
{
if (last_weight_index == s->f.weight_index) continue;
last_weight_index = s->f.weight_index;
// float *weights_for_w = &(weights[s->f.weight_index]);
float *weights_for_w = &(weights[s->f.weight_index & weights.mask()]);
float decay_component =
l.decay_levels.end()[-2] - l.decay_levels.end()[(int)(-1 - l.example_t + *(weights_for_w + l.all->lda))];
float decay = fmin(1.0f, correctedExp(decay_component));
float *u_for_w = weights_for_w + l.all->lda + 1;
*(weights_for_w + l.all->lda) = (float)l.example_t;
for (size_t k = 0; k < l.all->lda; k++)
{
weights_for_w[k] *= decay;
u_for_w[k] = weights_for_w[k] + l.lda_rho;
}
l.expdigammify_2(*l.all, u_for_w, l.digammas.begin());
}
for (size_t d = 0; d < batch_size; d++)
{
float score = lda_loop(l, l.Elogtheta, &(l.v[d * l.all->lda]), l.examples[d], l.all->power_t);
if (l.all->audit) GD::print_audit_features(*l.all, *l.examples[d]);
// If the doc is empty, give it loss of 0.
if (l.doc_lengths[d] > 0)
{
l.all->sd->sum_loss -= score;
l.all->sd->sum_loss_since_last_dump -= score;
}
if (l.finish_example_count > 0)
{
return_example(*l.all, *l.examples[d]);
l.finish_example_count--;
}
}
// -t there's no need to update weights (especially since it's a noop)
if (eta != 0)
{
for (index_feature *s = &l.sorted_features[0]; s <= &l.sorted_features.back();)
{
index_feature *next = s + 1;
while (next <= &l.sorted_features.back() && next->f.weight_index == s->f.weight_index) next++;
float *word_weights = &(weights[s->f.weight_index]);
for (size_t k = 0; k < l.all->lda; k++, ++word_weights)
{
float new_value = minuseta * *word_weights;
*word_weights = new_value;
}
for (; s != next; s++)
{
float *v_s = &(l.v[s->document * l.all->lda]);
float *u_for_w = &(weights[s->f.weight_index]) + l.all->lda + 1;
float c_w = eta * find_cw(l, u_for_w, v_s) * s->f.x;
word_weights = &(weights[s->f.weight_index]);
for (size_t k = 0; k < l.all->lda; k++, ++u_for_w, ++word_weights)
{
float new_value = *u_for_w * v_s[k] * c_w;
l.total_new[k] += new_value;
*word_weights += new_value;
}
}
}
for (size_t k = 0; k < l.all->lda; k++)
{
l.total_lambda[k] *= minuseta;
l.total_lambda[k] += l.total_new[k];
}
}
l.sorted_features.resize(0);
l.examples.clear();
l.doc_lengths.clear();
}
void learn(lda &l, VW::LEARNER::single_learner &, example &ec)
{
uint32_t num_ex = (uint32_t)l.examples.size();
l.examples.push_back(&ec);
l.doc_lengths.push_back(0);
for (features &fs : ec)
{
for (features::iterator &f : fs)
{
index_feature temp = {num_ex, feature(f.value(), f.index())};
l.sorted_features.push_back(temp);
l.doc_lengths[num_ex] += (int)f.value();
}
}
if (++num_ex == l.minibatch) learn_batch(l);
}
void learn_with_metrics(lda &l, VW::LEARNER::single_learner &base, example &ec)
{
if (l.all->passes_complete == 0)
{
// build feature to example map
uint64_t stride_shift = l.all->weights.stride_shift();
uint64_t weight_mask = l.all->weights.mask();
for (features &fs : ec)
{
for (features::iterator &f : fs)
{
uint64_t idx = (f.index() & weight_mask) >> stride_shift;
l.feature_counts[idx] += (uint32_t)f.value();
l.feature_to_example_map[idx].push_back(ec.example_counter);
}
}
}