-
Notifications
You must be signed in to change notification settings - Fork 1.9k
C# Binding
This is a tutorial for the new Vowpal Wabbit C# binding. Here's a list of major features:
- Very efficient serialization from managed to native space using runtime compilation.
- Declarative specification of example data structure.
- Thread-saftey through object pooling and shared models.
- Example level caching (prediction only).
- Improved memory management.
The binding exposes three different options to interact with native vowpal wabbit, each having pros and cons:
- User defined data types: use [VW.VowpalWabbit<TUserType>] (https://github.com/JohnLangford/vowpal_wabbit/blob/master/cs/VowpalWabbit.cs)
- Generic data structures (e.g. records consisting of key/value/type tuples): use VW.VowpalWabbit and [VW.VowpalWabbitNamespaceBuilder] (https://github.com/JohnLangford/vowpal_wabbit/blob/master/vw_clr/vw_clr.h)
- String based examples: use VW.VowpalWabbit
Install the Vowpal Wabbit NuGet Package using
Install-Package VowpalWabbit
The nuget includes:
- C++ part of vowpal wabbit compiled for Windows x64 Release
- C++/CLI wrapper
- C# wrapper supporting declarative data to feature conversion
- PDB debug symbols
- Source
- IntelliSense documentation
Note: I'm aware of symbolsource.org, but due to some PDB reference to system headers such as undname.h, I was unable to create a "symbolsource.org" valid -symbols.nupkg.
Through out the examples the following dataset from Rcv1-example is used:
1 |f 13:3.9656971e-02 24:3.4781646e-02 69:4.6296168e-02 85:6.1853945e-02 ... 0 |f 9:8.5609287e-02 14:2.9904654e-02 19:6.1031535e-02 20:2.1757640e-02 ... ...
Pro | Cons |
---|---|
very performant | one-time overhead of serializer compilation |
declarative data to feature conversion |
The following class Row is an example of a user defined type usable by the serializer.
using VW.Interfaces;
using VW.Serializer.Attributes;
using System.Collections.Generic;
public class Row : IExample
{
[Feature(FeatureGroup = 'f', Namespace = "eatures", Name = "const", Order = 2)]
public float Constant { get; set; }
[Feature(FeatureGroup = 'f', Namespace = "eatures", Order = 1)]
public IList<KeyValuePair<string, float>> Features { get; set; }
public string Line { get; set; }
public ILabel Label { get; set;}
}
The serializer follows an opt-in model, thus only properties annotated using [Feature](https://github.com/eisber/vowpal_wabbit/blob/master/cs/Serializer/Attributes/FeatureAttribute.cs) are transformed into vowpal wabbit features. The [Feature](https://github.com/eisber/vowpal_wabbit/blob/master/cs/Serializer/Attributes/FeatureAttribute.cs) attribute supports the following properties:
Property | Description | Default |
---|---|---|
FeatureGroup | it's the first character of the namespace in the string format | 0 |
Namespace | concatenated with the FeatureGroup | 0 = hash(Namespace) |
Name | name of the feature (e.g. 13, 24, 69 from the example above) | property name |
Enumerize | if true, features will be converted to string and then hashed. e.g. VW line format: Age_15 (Enumerize=true), Age:15 (Enumerize=false) | false |
Order | feature serialization order. Useful for comparison with VW command line version | 0 |
Furthermore the serializer will recursively traverse all properties of the supplied example type on the search for more [Feature](https://github.com/eisber/vowpal_wabbit/blob/master/cs/Serializer/Attributes/FeatureAttribute.cs) attributed properties (Note: recursive data structures are not supported). Feature groups and namespaces are inherited from parent properties and can be overridden. Finally all annotated properties are put into the corresponding namespaces.
using VW.Serializer.Attributes;
public class ParentRow
{
[Feature(FeatureGroup = 'f')]
public CommonFeatures UserFeatures { get; set; }
[Feature(FeatureGroup = 'f')]
public String Country { get; set; }
[Feature(FeatureGroup = 'g', Enumerize=true)]
public int Age { get; set; }
}
public class CommonFeatures
{
[Feature]
public int A { get; set; }
[Feature(FeatureGroup = 'g', Name="Beta")]
public float B { get; set; }
}
// ...
var row = new ParentRow
{
UserFeatures = new CommonFeatures
{
A = 2,
B = 3.1f
},
Country = "Austria",
Age = 25
};
The vowpal wabbit string equivalent of the above instance is
|f A:2 Country:Austria |g Beta:3.1 Age_25
using (var vw = new VW.VowpalWabbit<Row>("-f rcv1.model"))
{
var userExample = new Row { /* ... */ };
using (var vwExample = vw.ReadExample(userExample))
{
vwExample.Learn();
}
}
- Serializers are globally cached per type (read static variable).
- Native example memory is cached using a pool per VW.VowpalWabbit instance. Each ReadExample call will either get memory from the pool or allocate new memory. Disposing VowpalWabbitExample returns the native memory to the pool. Thus if you loop over many examples and dispose them immediately the pool size will be equal to 1.
Pro | Cons |
---|---|
most performant variant | results might not be reproducible using VW binary as it allows for feature representation not expressible through the string format |
provides maximum flexibility with feature representation | verbose |
suited for generic data structures (e.g. records, data table, ...) | --affix is not supported, though easy to replicate in C# |
using (var vw = new VW.VowpalWabbit("-f rcv1.model"))
{
VW.VowpalWabbitExample example = null;
try
{
// 1 |f 13:3.9656971e-02 24:3.4781646e-02 69:4.6296168e-02
using (var exampleBuilder = new VW.VowpalWabbitExampleBuilder(vw))
{
var ns = exampleBuilder.AddNamespace('f');
var namespaceHash = vw.HashSpace("f");
var featureHash = vw.HashFeature("13", namespaceHash);
ns.AddFeature(featureHash, 8.5609287e-02f);
featureHash = vw.HashFeature("24", namespaceHash);
ns.AddFeature(featureHash, 3.4781646e-02f);
featureHash = vw.HashFeature("69", namespaceHash);
ns.AddFeature(featureHash, 4.6296168e-02f);
exampleBuilder.Label = "1";
// hand over of memory management
example = exampleBuilder.CreateExample();
}
example.Learn();
}
finally
{
if (example != null)
{
example.Dispose();
}
}
}
Pro | Cons |
---|---|
no pitfalls when it comes to reproducibility/compatibility when used together with VW binary | slowest variant due to string marshaling |
supports affixes |
using (var vw = new VW.VowpalWabbit("-f rcv1.model"))
{
vw.Learn("1 |f 13:3.9656971e-02 24:3.4781646e-02 69:4.6296168e-02");
// read more data ...
var prediction = vw.Predict<VW.VowpalWabbitScalarPrediction>("|f 9:8.5609287e-02 14:2.9904654e-02 19:6.1031535e-02 20:2.1757640e-02");
System.Console.WriteLine("Prediction: " + prediction.Value);
}
VW.VowpalWabbit are not thread-safe, but by using object pools and shared models we can enable multi-thread scenarios without multiplying the memory requirements by the number of threads.
Consider the following excerpt from TestSharedModel Unit Test
using (var vwModel = new VowpalWabbitModel("-t", File.OpenRead(cbadfModelFile)))
using (var vwPool = new ObjectPool<VowpalWabbit<DataString, DataStringADF>>(new VowpalWabbitFactory<DataString, DataStringADF>(vwModel)))
{
Parallel.For
(
fromInclusive: 0,
toExclusive: 20,
parallelOptions: new ParallelOptions { MaxDegreeOfParallelism = Environment.ProcessorCount * 2 },
body: i =>
{
using (PooledObject<VowpalWabbit<DataString, DataStringADF>> vwObject = vwPool.Get())
{
// do learning/predictions here
var example = new DataString { /* ... */ };
vwObject.Value.Predict(example);
}
}
);
var newVwModel = new VowpalWabbitModel("-t", File.OpenRead("new file"));
vwPool.UpdateFactory(new VowpalWabbitFactory<DataString, DataStringADF>(newVwModel));
}
vwModel is the shared model. Each call to vwPool.Get() will either get a new instance spawned of the shared model or re-use an existing.
A very common scenario when scoring is to rollout updates of new models. The ObjectPool class allows safe updating of the factory and proper disposal. After the call to vwPool.UpdateFactory(), vwPool.Get() will only return instances spawned of the new shared model (newVwModel). Not-in-use VowpalWabbit instances are disposed as part of UpdateFactory(). VowpalWabbit instances currently in-use are diposed upon return to the pool (PooledObject.Dispose).
- Home
- First Steps
- Input
- Command line arguments
- Model saving and loading
- Controlling VW's output
- Audit
- Algorithm details
- Awesome Vowpal Wabbit
- Learning algorithm
- Learning to Search subsystem
- Loss functions
- What is a learner?
- Docker image
- Model merging
- Evaluation of exploration algorithms
- Reductions
- Contextual Bandit algorithms
- Contextual Bandit Exploration with SquareCB
- Contextual Bandit Zeroth Order Optimization
- Conditional Contextual Bandit
- Slates
- CATS, CATS-pdf for Continuous Actions
- Automl
- Epsilon Decay
- Warm starting contextual bandits
- Efficient Second Order Online Learning
- Latent Dirichlet Allocation
- VW Reductions Workflows
- Interaction Grounded Learning
- CB with Large Action Spaces
- CB with Graph Feedback
- FreeGrad
- Marginal
- Active Learning
- Eigen Memory Trees (EMT)
- Element-wise interaction
- Bindings
-
Examples
- Logged Contextual Bandit example
- One Against All (oaa) multi class example
- Weighted All Pairs (wap) multi class example
- Cost Sensitive One Against All (csoaa) multi class example
- Multiclass classification
- Error Correcting Tournament (ect) multi class example
- Malicious URL example
- Daemon example
- Matrix factorization example
- Rcv1 example
- Truncated gradient descent example
- Scripts
- Implement your own joint prediction model
- Predicting probabilities
- murmur2 vs murmur3
- Weight vector
- Matching Label and Prediction Types Between Reductions
- Zhen's Presentation Slides on enhancements to vw
- EZExample Archive
- Design Documents
- Contribute: