-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathNetworkMerging.py
490 lines (480 loc) · 24.5 KB
/
NetworkMerging.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
# This file contains various approaches to merging two networks
# Created by: Leonid Chindelevitch
# Last modified: January 13, 2012
from Utilities import *
from ReactionMatching import *
def mergeNetworks(Reacts0, Reacts1, ReactEquiv, del0, del1, rev0, rev1, MetabEquiv, nMetab0, nMetab1, ext0, ext1, exempt0, exempt1):
# This function merges two networks by using a map between their reactions
(metabMapNew0, metabMapNew1, metabFullMap, externals) = prepareNumbering(MetabEquiv, nMetab0, nMetab1, ext0, ext1, exempt0, exempt1)
reacts0 = set(range(len(Reacts0)))
reacts1 = set(range(len(Reacts1)))
reactsMapped0 = [x for x in list(ReactEquiv.keys()) if type(x)==type(0)]
reactsMapped0 += sum([[y for y in x] for x in list(ReactEquiv.keys()) if type(x)!=type(0)],[])
reactsMapped1 = [x for x in list(ReactEquiv.values()) if type(x)==type(0)]
reactsMapped1 += sum([[y for y in x] for x in list(ReactEquiv.values()) if type(x)!=type(0)],[])
reactsUnmapped0 = sorted(list(reacts0.difference(reactsMapped0 + del0)))
reactsUnmapped1 = sorted(list(reacts1.difference(reactsMapped1 + del1)))
nEquiv = len(ReactEquiv)
reactFullMap = {}
auxMetabMap = {}
for x in metabFullMap:
auxMetabMap[x] = x
leftClasses = list(ReactEquiv.keys())
rightClasses = list(ReactEquiv.values())
cnt = 0
reversible = []
newReacts = []
problematic = []
for i in range(nEquiv):
curReactLeft = leftClasses[i]
curReactRight = rightClasses[i]
(singleL, singleR) = (0,0)
if type(curReactLeft) == type(0):
singleL = 1
curReactLeft = [curReactLeft]
else:
curReactLeft = list(curReactLeft)
if type(curReactRight) == type(0):
singleR = 1
curReactRight = [curReactRight]
else:
curReactRight = list(curReactRight)
if (singleL, singleR) == (0,0):
print(("Error: many-to-many mapping !" + str(i)))
reactsLeft = [mapReact(Reacts0[x], metabMapNew0, exempt0) for x in curReactLeft]
reactsRight = [mapReact(Reacts1[x], metabMapNew1, exempt1) for x in curReactRight]
# eliminate possible duplicates
reactsLeft = list(set([tuple([tuple(y) for y in x]) for x in reactsLeft]))
reactsRight = list(set([tuple([tuple(y) for y in x]) for x in reactsRight]))
# add the reactions together
reactLeftTotal = addReacts(reactsLeft)
reactRightTotal = addReacts(reactsRight)
# compare the total reactions
result = compareReact(reactLeftTotal, reactRightTotal, auxMetabMap, [])
if type(result) == type(0):
if singleL:
newReacts.append(reactLeftTotal)
else:
newReacts.append(reactRightTotal)
reactFullMap[cnt] = (curReactLeft, curReactRight)
# determine reversibility
revL = len([x for x in curReactLeft if x in rev0])
revR = len([x for x in curReactRight if x in rev1])
if revL or revR:
reversible.append(cnt)
cnt += 1
else:
problematic.append((i, result))
for i in range(len(reactsUnmapped0)):
curInd = reactsUnmapped0[i]
curReact = mapReact(Reacts0[curInd], metabMapNew0, exempt0)
newReacts.append(curReact)
reactFullMap[cnt] = ([curInd], [])
if curInd in rev0:
reversible.append(cnt)
cnt += 1
for i in range(len(reactsUnmapped1)):
curInd = reactsUnmapped1[i]
curReact = mapReact(Reacts1[curInd], metabMapNew1, exempt1)
newReacts.append(curReact)
reactFullMap[cnt] = ([], [curInd])
if curInd in rev1:
reversible.append(cnt)
cnt += 1
return (newReacts, reactFullMap, reversible, problematic, metabFullMap, externals)
def prepareNumbering(MetabEquiv, nMetab0, nMetab1, externals0, externals1, exempt0 = [], exempt1 = []):
# This function prepares a global numbering of metabolites
metabs0 = set(range(nMetab0))
metabs1 = set(range(nMetab1))
metabsMapped0 = [x for x in list(MetabEquiv.keys()) if type(x)==type(0)]
metabsMapped0 += sum([[y for y in x] for x in list(MetabEquiv.keys()) if type(x)!=type(0)],[])
metabsMapped1 = [x for x in list(MetabEquiv.values()) if type(x)==type(0)]
metabsMapped1 += sum([[y for y in x] for x in list(MetabEquiv.values()) if type(x)!=type(0)],[])
metabsUnmapped0 = sorted(list(metabs0.difference(metabsMapped0 + exempt0)))
metabsUnmapped1 = sorted(list(metabs1.difference(metabsMapped1 + exempt1)))
metabMapNew0 = {}
metabMapNew1 = {}
metabFullMap = {}
externals = []
nEquiv = len(MetabEquiv)
leftClasses = list(MetabEquiv.keys())
rightClasses = list(MetabEquiv.values())
cnt = 0
for i in range(nEquiv):
(extL, extR) = (0,0)
# true if at least one element is external
curLeft = leftClasses[i]
curRight = rightClasses[i]
if type(curLeft) == type(0):
metabMapNew0[curLeft] = cnt
if curLeft in externals0:
extL = 1
curLeft = [curLeft]
else:
for x in curLeft:
metabMapNew0[x] = cnt
if x in externals0:
extL = 1
curLeft = list(curLeft)
if type(curRight) == type(0):
metabMapNew1[curRight] = cnt
if curRight in externals0:
extR = 1
curRight = [curRight]
else:
for x in curRight:
metabMapNew1[x] = cnt
if x in externals1:
extR = 1
curRight = list(curRight)
metabFullMap[cnt] = (curLeft, curRight)
if extL and extR:
externals.append(cnt)
cnt += 1
for i in range(len(metabsUnmapped0)):
curLeft = metabsUnmapped0[i]
metabMapNew0[curLeft] = cnt
metabFullMap[cnt] = ([curLeft], [])
if curLeft in externals0:
externals.append(cnt)
cnt += 1
for i in range(len(metabsUnmapped1)):
curRight = metabsUnmapped1[i]
metabMapNew1[curRight] = cnt
metabFullMap[cnt] = ([],[curRight])
if curRight in externals1:
externals.append(cnt)
cnt += 1
return (metabMapNew0, metabMapNew1, metabFullMap, externals)
def MetabNumbering(MetabMatch, externals0, externals1, del0 = [], del1 = []):
# Prepares a global numbering for metabolites in the merged network
# externals0 and externals1 are the lists of external metabolites
# del0 and del1 are sets of metabolites to delete from the network
# NOTE: The deleted metabolites must NOT be part of the matching!
# NOTE: The MetabMatch matrix needs to have all the -1 changed to 0
# ALSO: Assumes that the cover is a transitive cover, and that all
# external compounds are matched only to each other. Fails if not!
# ALSO: Assumes that external compounds are numbered consecutively
# and placed at the end of their metabolite lists. May fail if not!
nMetab0 = len(MetabMatch)
nMetab1 = len(MetabMatch[0])
internals0 = [x for x in range(nMetab0) if x not in externals0]
internals1 = [x for x in range(nMetab1) if x not in externals1]
MetabMatchInt = [[MetabMatch[x][y] for y in internals1] for x in internals0]
MetabMatchExt = [[MetabMatch[x][y] for y in externals1] for x in externals0]
(Groups0I, Groups1I) = RectangleCover(MetabMatchInt)
(Groups0E, Groups1E) = RectangleCover(MetabMatchExt)
# Translate into the original indices!
Groups0E = [[x + len(internals0) for x in group] for group in Groups0E]
Groups1E = [[x + len(internals1) for x in group] for group in Groups1E]
unmatched0 = [x for x in range(nMetab0) if not [_f for _f in MetabMatch[x] if _f]]
unmatchedInt0 = [x for x in unmatched0 if x in internals0]
unmatchedExt0 = [x for x in unmatched0 if x in externals0]
unmatched1 = [y for y in range(nMetab1) if not [_f for _f in [MetabMatch[x][y] for x in range(nMetab0)] if _f]]
unmatchedInt1 = [x for x in unmatched1 if x in internals1]
unmatchedExt1 = [x for x in unmatched1 if x in externals1]
LI, LE = len(Groups0I), len(Groups0E)
UI0, UI1 = len(unmatchedInt0), len(unmatchedInt1)
UE0, UE1 = len(unmatchedExt0), len(unmatchedExt1)
nInternal = LI + UI0 + UI1
nExternal = LE + UE0 + UE1
nTotal = nInternal + nExternal - (len(del0) + len(del1))
Numbering0 = [-1 for i in range(nMetab0)]
Numbering1 = [-1 for i in range(nMetab1)]
Numbering = {}
Total = 0
for i in range(LI):
group0, group1 = Groups0I[i], Groups1I[i]
for j in group0:
Numbering0[j] = Total
for j in group1:
Numbering1[j] = Total
Numbering[Total] = [(x,0) for x in group0] + [(x,1) for x in group1]
Total += 1
for i in range(UI0):
cur = unmatchedInt0[i]
if cur not in del0:
Numbering0[cur] = Total
Numbering[Total] = [(cur,0)]
Total += 1
for i in range(UI1):
cur = unmatchedInt1[i]
if cur not in del1:
Numbering1[cur] = Total
Numbering[Total] = [(cur,1)]
Total += 1
externals = list(range(Total, nTotal))
for i in range(LE):
group0, group1 = Groups0E[i], Groups1E[i]
for j in group0:
Numbering0[j] = Total
for j in group1:
Numbering1[j] = Total
Numbering[Total] = [(x,0) for x in group0] + [(x,1) for x in group1]
Total += 1
for i in range(UE0):
cur = unmatchedExt0[i]
if cur not in del0:
Numbering0[cur] = Total
Numbering[Total] = [(cur,0)]
Total += 1
for i in range(UE1):
cur = unmatchedExt1[i]
if cur not in del1:
Numbering1[cur] = Total
Numbering[Total] = [(cur,1)]
Total += 1
if Total != nTotal:
print("Error: this should never happen during MetabNumbering!")
return (Numbering0, Numbering1, Numbering, externals)
def ReactNumbering(ReactMatch, irrev0, irrev1, del0 = [], del1 = [], Opposite = []):
# Prepares a global numbering for reactions in the merged network
# irrev0 and irrev1 are the sets of initially irreversible reactions
# del0 and del1 are sets of reactions to be deleted from the network
# Opposite contains matched reactions that are oppositely directed.
# NOTE: The deleted reactions must NOT also be part of the matching!
# NOTE: The ReactMatch matrix needs to have all the -1 changed to 0
# ALSO: Assumes that the cover is a transitive cover. Fails if not!
# ALSO: Assumes that all the many-to-many matches have been resolved.
nReact0 = len(ReactMatch)
nReact1 = len(ReactMatch[0])
(Groups0, Groups1) = RectangleCover(ReactMatch)
Numbering0 = [[] for i in range(nReact0)]
Numbering1 = [[] for i in range(nReact1)]
Numbering = {}
irrev = []
# NOTE: [] in Numbering0 or Numbering1 means reaction is deleted!
unmatched0 = [x for x in range(nReact0) if not [_f for _f in ReactMatch[x] if _f]]
unmatched1 = [y for y in range(nReact1) if not [_f for _f in [ReactMatch[x][y] for x in range(nReact0)] if _f]]
L, U0, U1, D0, D1 = len(Groups0), len(unmatched0), len(unmatched1), len(del0), len(del1)
lens0, lens1 = [len(x) for x in Groups0], [len(x) for x in Groups1]
maxes = [max(lens0[x], lens1[x]) for x in range(L)]
nTotal = sum(maxes) + (U0 - D0) + (U1 - D1)
newOpposite = []
Total = 0
for i in range(L):
group0, group1 = Groups0[i], Groups1[i]
rev = False
if len(group0) == maxes[i]:
j1 = group1[0]
if j1 not in irrev1:
rev = True
Numbering1[j1] = list(range(Total, Total + maxes[i]))
for j in group0:
Numbering0[j] = [Total]
Numbering[Total] = [(j,0), (j1,1)]
if j not in irrev0:
rev = True
if [j, j1] in Opposite:
rev = True
newOpposite.append(Total)
Total += 1
else: # len(group1) = maxes[i]
j0 = group0[0]
Numbering0[j0] = list(range(Total, Total + maxes[i]))
if j0 not in irrev0:
rev = True
for j in group1:
Numbering1[j] = [Total]
Numbering[Total] = [(j0,0), (j,1)]
if j not in irrev1:
rev = True
if [j0, j] in Opposite:
rev = True
newOpposite.append(Total)
Total += 1
if not rev:
irrev += list(range(Total - maxes[i], Total))
for i in range(U0):
j = unmatched0[i]
if j not in del0:
Numbering0[j] = [Total]
Numbering[Total] = [(j,0)]
if j in irrev0:
irrev += [Total]
Total += 1
for i in range(U1):
j = unmatched1[i]
if j not in del1:
Numbering1[j] = [Total]
Numbering[Total] = [(j,1)]
if j in irrev1:
irrev += [Total]
Total += 1
if Total != nTotal:
print("Error: this should never happen during ReactNumbering!")
return (Numbering0, Numbering1, Numbering, irrev, newOpposite)
def RenumberReactions(Reactions, Numbering):
# This function renumbers the reactions (in pair form) based on a map specified by Numbering
return [[[Numbering[x[0]], x[1]] for x in react if Numbering[x[0]] != -1] for react in Reactions]
def NetworkMerge(MetabMatch, externals0, externals1, MetabDel0, MetabDel1, React0, React1, ReactMatch, irrev0, irrev1, del0, del1, Opposite):
# Creates a merged network on the basis of the given information about each network and the reaction and metabolite matching matrices
(MetNumbering0, MetNumbering1, MetNumbering, externals) = MetabNumbering(MetabMatch, externals0, externals1, MetabDel0, MetabDel1)
(RxnNumbering0, RxnNumbering1, RxnNumbering, irrev, newOpposite) = ReactNumbering(ReactMatch, irrev0, irrev1, del0, del1, Opposite)
NewReact0 = RenumberReactions(React0, MetNumbering0)
NewReact1 = RenumberReactions(React1, MetNumbering1)
NewReact = [[] for i in range(len(RxnNumbering))]
for i in range(len(RxnNumbering)):
reacts = RxnNumbering[i]
if len(reacts) == 2:
react0, react1 = reacts[0][0], reacts[1][0]
# decide whether this is a 1-1 match or a 1-many/many-1 match
c0, c1 = RxnNumbering0.count(i), RxnNumbering1.count(i)
if c0 == 1 and c1 == 1: # 1-1 match
NewReact[i] = CombineReacts(NewReact0[react0], NewReact1[react1], (i in newOpposite))
elif c0 == 1: # 1-many match; just use the second reaction
NewReact[i] = NewReact1[react1]
else:
NewReact[i] = NewReact0[react0]
else: # a single reaction...
if reacts[0][1] == 0: # which comes from network0
NewReact[i] = NewReact0[reacts[0][0]]
else: # which comes from network1
NewReact[i] = NewReact1[reacts[0][0]]
return (NewReact, RxnNumbering0, RxnNumbering1, RxnNumbering, irrev, MetNumbering0, MetNumbering1, MetNumbering, externals)
def MetabMerge(MetabMatch, externals0, externals1, MetabDel0, MetabDel1, React0, React1, irrev0, irrev1):
# Creates a merged network based only on the information about matching metabolites (note: also collects together isozymes)
(MetNumbering0, MetNumbering1, MetNumbering, externals) = MetabNumbering(MetabMatch, externals0, externals1, MetabDel0, MetabDel1)
nReact0, nReact1 = len(React0), len(React1)
RxnNumbering0, RxnNumbering1 = [-1 for x in range(nReact0)], [-1 for x in range(nReact1)]
NewReact0 = RenumberReactions(React0, MetNumbering0)
NewReact1 = RenumberReactions(React1, MetNumbering1)
# now find the isozymes!
NewReact = NewReact0 + NewReact1
# sort the metabolites in the right order
NewReact = [sorted(x) for x in NewReact]
Isozymes = groupIdentical(NewReact)
# keep one reaction per isozyme set!
anchors = [x[0] for x in Isozymes]
first = anchors[0]
if len(NewReact[first]) == 0:
anchors = anchors[1:]
NewReact = [NewReact[x] for x in anchors]
L = len(NewReact)
RxnNumbering = [-1 for x in range(L)]
irrev = list(range(L))
for i in range(L):
curIrrev = True
curGroup = Isozymes[i]
curL = len(curGroup)
aux = [int(x >= nReact0) for x in curGroup]
RxnNumbering[i] = [(curGroup[j] - aux[j]*nReact0, aux[j]) for j in range(curL)]
for j in range(curL):
if aux[j] == 0:
RxnNumbering0[curGroup[j]] = i
if curGroup[j] not in irrev0:
curIrrev = False
else:
RxnNumbering1[curGroup[j] - nReact0] = i
if (curGroup[j] - nReact0) not in irrev1:
curIrrev = False
if not curIrrev:
irrev.remove(i)
return (NewReact, RxnNumbering0, RxnNumbering1, RxnNumbering, irrev, MetNumbering0, MetNumbering1, MetNumbering, externals)
def MetabMergeExcept(MetabMatch, externals0, externals1, MetabExcept0, MetabExcept1, React0, React1, irrev0, irrev1):
# Creates a merged network based only on the information about matching metabolites (note: also collects together isozymes)
# The difference between this version and the previous version is that we keep ALL the metabolites, but allow to identify
# as isozymes two reactions which differ only by the presence of "exceptional" metabolites, MetabExcept0/1, respectively.
# In such a case the reaction with the most exceptional metabolites is taken to be the one representing the isozyme subset.
(MetNumbering0, MetNumbering1, MetNumbering, externals) = MetabNumbering(MetabMatch, externals0, externals1)
nReact0, nReact1 = len(React0), len(React1)
RxnNumbering0, RxnNumbering1 = [-1 for x in range(nReact0)], [-1 for x in range(nReact1)]
NewReact0 = RenumberReactions(React0, MetNumbering0)
NewReact1 = RenumberReactions(React1, MetNumbering1)
# now find the isozymes!
NewReact = NewReact0 + NewReact1
# sort the metabolites in the right order
NewReact = [sorted(x) for x in NewReact]
Except0 = [MetNumbering0[x] for x in MetabExcept0]
Except1 = [MetNumbering1[x] for x in MetabExcept1]
Except = Except0 + Except1
NewReactNoExcept = [[y for y in x if y[0] not in Except] for x in NewReact]
Isozymes = groupIdentical(NewReactNoExcept)
# keep the "longest" reaction from each isozyme set!
anchors = [max(x, key = lambda y:len(NewReact[y])) for x in Isozymes]
# check if there are any reactions that only involve exceptional metabolites
first = anchors[0]
if len(NewReactNoExcept[first]) == 0:
# keep all such reactions instead of just one
anchors = Isozymes[0] + anchors[1:]
NewReact = [NewReact[x] for x in anchors]
L = len(NewReact)
RxnNumbering = [-1 for x in range(L)]
irrev = list(range(L))
for i in range(L):
curIrrev = True
curGroup = Isozymes[i]
curL = len(curGroup)
aux = [int(x >= nReact0) for x in curGroup]
RxnNumbering[i] = [(curGroup[j] - aux[j]*nReact0, aux[j]) for j in range(curL)]
for j in range(curL):
if aux[j] == 0:
RxnNumbering0[curGroup[j]] = i
if curGroup[j] not in irrev0:
curIrrev = False
else:
RxnNumbering1[curGroup[j] - nReact0] = i
if (curGroup[j] - nReact0) not in irrev1:
curIrrev = False
if not curIrrev:
irrev.remove(i)
return (NewReact, RxnNumbering0, RxnNumbering1, RxnNumbering, irrev, MetNumbering0, MetNumbering1, MetNumbering, externals)
def prepareMergedModel(MergedModel, growth, Genes, MetabNames, Externals, ReactFeatures = [], MetabFeatures = [], GeneFeatures = []):
# This function prepares a merged metabolic model for conversion into an SBML file.
# MergedModel is the 9-tuple (NewReact, RxnNumbering0, RxnNumbering1, RxnNumbering, irrev, MetNumbering0, MetNumbering1, MetNumbering, externals)
# The other inputs are lists of size 2, containing the corresponding information for model 0 and model 1, respectively.
# The exception is growth, which is a tuple whose first element is the index of a growth reaction and the second, that of the chosen model.
MergedGrowth, MergedGenes, MergedMetabNames, MergedExternal, MergedReactFeatures, MergedMetabFeatures, MergedGeneFeatures = [], [], [], [], [], [], []
# unpacking
NewReact, RxnNumbering0, RxnNumbering1, RxnNumbering, irrev, MetNumbering0, MetNumbering1, MetNumbering, externals = MergedModel
ExtNumbering = [MetNumbering[x] for x in externals]
MetNumbering = [MetNumbering[x] for x in range(len(MetNumbering)) if x not in externals]
# repacking
RxnNumberingFull = [RxnNumbering0, RxnNumbering1]
MetNumberingFull = [MetNumbering0, MetNumbering1]
# computing
MergedGrowth = RxnNumberingFull[0][growth[0]]
print('Processing genes')
MergedGenes = [sorted(sum([Genes[x[1]][x[0]] for x in RxnNumbering[y]],[])) for y in range(len(RxnNumbering))]
print('Processing names')
MergedMetabNames = [' and '.join(sorted([MetabNames[x[1]][x[0]] for x in MetNumbering[y]])) for y in range(len(MetNumbering))]
# NOTE: for MergedExternal, we only choose ONE of the possible antecedents
print('Processing externals')
MergedExternal = [MetNumberingFull[x[1]][Externals[x[1]][x[0]-len(MetabNames[x[1]])]] for x in [z[0] for z in ExtNumbering]]
if ReactFeatures:
print('Processing reactions')
ReactFeatures0, ReactFeatures1 = ReactFeatures[0], ReactFeatures[1]
Attributes0, Attributes1 = ReactFeatures0[0], ReactFeatures1[0]
commonAttributes = [x for x in Attributes0 if x in Attributes1]
uniqueAttributes0, uniqueAttributes1 = [x for x in Attributes0 if x not in commonAttributes], [x for x in Attributes1 if x not in commonAttributes]
Attributes = uniqueAttributes0 + uniqueAttributes1 + commonAttributes
inds0, inds1 = [Attributes0.index(x) for x in uniqueAttributes0], [Attributes1.index(x) for x in uniqueAttributes1]
C0, C1 = [Attributes0.index(x) for x in commonAttributes], [Attributes1.index(x) for x in commonAttributes]
MergedReactFeatures = [[]]*(len(RxnNumbering) + 1)
MergedReactFeatures[0] = Attributes
for y in range(len(RxnNumbering)):
L = RxnNumbering[y]
L0, L1 = [x[0] for x in L if x[1] == 0], [x[0] for x in L if x[1] == 1]
MergedReactFeatures[y+1] = [' or '.join([ReactFeatures0[i][j] for i in L0]) for j in inds0] + [' or '.join([ReactFeatures1[i][j] for i in L1]) for j in inds1]
MergedReactFeatures[y+1] += [' OR '.join(x) for x in zip([' or '.join([ReactFeatures0[i][j] for i in L0]) for j in C0],[' or '.join([ReactFeatures1[i][j] for i in L1]) for j in C1])]
if MetabFeatures:
print('Processing metabolites')
MetabFeatures0, MetabFeatures1 = MetabFeatures[0], MetabFeatures[1]
Attributes0, Attributes1 = MetabFeatures0[0], MetabFeatures1[0]
commonAttributes = [x for x in Attributes0 if x in Attributes1]
uniqueAttributes0, uniqueAttributes1 = [x for x in Attributes0 if x not in commonAttributes], [x for x in Attributes1 if x not in commonAttributes]
Attributes = uniqueAttributes0 + uniqueAttributes1 + commonAttributes
inds0, inds1 = [Attributes0.index(x) for x in uniqueAttributes0], [Attributes1.index(x) for x in uniqueAttributes1]
C0, C1 = [Attributes0.index(x) for x in commonAttributes], [Attributes1.index(x) for x in commonAttributes]
MergedMetabFeatures = [[]]*(len(MetNumbering) + 1)
MergedMetabFeatures[0] = Attributes
for y in range(len(MetNumbering)):
L = MetNumbering[y]
L0, L1 = [x[0] for x in L if x[1] == 0], [x[0] for x in L if x[1] == 1]
MergedMetabFeatures[y+1] = [' or '.join([MetabFeatures0[i][j] for i in L0]) for j in inds0] + [' or '.join([MetabFeatures1[i][j] for i in L1]) for j in inds1]
MergedMetabFeatures[y+1] += [' OR '.join(x) for x in zip([' or '.join([MetabFeatures0[i][j] for i in L0]) for j in C0],[' or '.join([MetabFeatures1[i][j] for i in L1]) for j in C1])]
if GeneFeatures:
print('Processing gene features')
GeneFeatures0, GeneFeatures1 = GeneFeatures[0], GeneFeatures[1]
# TO BE COMPLETED LATER!
return (NewReact, MergedGrowth, irrev, MergedGenes, MergedMetabNames, MergedExternal, MergedReactFeatures, MergedMetabFeatures, MergedGeneFeatures)