-
Notifications
You must be signed in to change notification settings - Fork 3
/
podi_makeflatfield.py
executable file
·252 lines (200 loc) · 9.08 KB
/
podi_makeflatfield.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#! /usr/bin/env python3
#
# Copyright 2012-2013 Ralf Kotulla
# kotulla@uwm.edu
#
# This file is part of the ODI QuickReduce pipeline package.
#
# If you find this program or parts thereof please make sure to
# cite it appropriately (please contact the author for the most
# up-to-date reference to use). Also if you find any problems
# or have suggestiosn on how to improve the code or its
# functionality please let me know. Comments and questions are
# always welcome.
#
# The code is made publicly available. Feel free to share the link
# with whoever might be interested. However, I do ask you to not
# publish additional copies on your own website or other sources.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
#
"""
This module handles the normalization of flat-fields.
"""
import sys
import os
import astropy.io.fits as pyfits
import numpy
import scipy
from podi_definitions import *
from podi_commandline import *
import podi_focalplanelayout
import podi_logging
import logging
def normalize_flatfield(filename, outputfile,
binning_x=8, binning_y=8,
repeats=3,
batchmode_hdu=None,
normalize_otas=None):
logger = logging.getLogger("NormFlatField")
logger.debug("Starting to normalize %s" % (str(batchmode_hdu)))
if (batchmode_hdu is not None):
hdulist = batchmode_hdu
else:
hdulist = pyfits.open(filename)
filter = hdulist[0].header['FILTER']
fpl = podi_focalplanelayout.FocalPlaneLayout(hdulist)
list_of_otas_to_normalize = fpl.get_science_area_otas(filter, include_vignetted=False)
if (normalize_otas is not None):
list_of_otas_to_normalize = normalize_otas
logger.info("Using these OTAs to normalize overall flux:\n%s" % (", ".join(["%02d" % ota for ota in list_of_otas_to_normalize])))
flatfield_data = numpy.zeros(
shape=(len(list_of_otas_to_normalize)*4096*4096//(binning_x*binning_y)),
dtype=numpy.float32)
flatfield_data[:] = numpy.NaN
# also prepare to store the global gain value
gain_sum = 0
gain_count = 0
datapos = 0
for extension in range(1, len(hdulist)): #hdulist[1:]:
if (not is_image_extension(hdulist[extension])):
continue
fppos = int(hdulist[extension].header['FPPOS'][2:4])
#print list_of_otas_to_normalize
try:
index = list_of_otas_to_normalize.index(fppos)
except:
# We didn't find this OTA in the list, so skip it
hdulist[extension].header["FF_NORM"] = (False, "Used in normalization")
extension += 1
continue
hdulist[extension].header["FF_NORM"] = (True, "Used in normalization")
gain_ota = hdulist[extension].header['GAIN']
gain_ota_count = hdulist[extension].header['NGAIN']
gain_sum += gain_ota * gain_ota_count
gain_count += gain_ota_count
# We now know that we should include this OTA in the
# calculation of the flat-field normalization
logger.debug("Adding OTA %02d to flat-field ..." % fppos)
#flatfield_data = numpy.concatenate((flatfield_data, extension.data.flatten()))
#flatfield_data[extension,:,:] = extension.data
if (binning_x>1 or binning_y>1):
sx, sy = hdulist[extension].data.shape[0], hdulist[extension].data.shape[1]
bx, by = sx//binning_x, sy//binning_y
one_d = numpy.reshape(hdulist[extension].data, (by,binning_y,bx,binning_x)).mean(axis=-1).mean(axis=1).flatten()
else:
one_d = hdulist[extension].data.flatten()
flatfield_data[datapos:datapos+one_d.shape[0]] = one_d
datapos += one_d.shape[0]
#print datapos
del one_d
# Remove all remaining NaN values and atruncate the array to the values actually used
finite = numpy.isfinite(flatfield_data[:datapos])
flatfield_data = flatfield_data[:datapos][finite]
# Now we are through all flatfields, compute the median value
logger.debug(" computing median ...")
sigma_min, sigma_max = -1e5, 1e6
for i in range(repeats):
valid = (flatfield_data > sigma_min) & (flatfield_data < sigma_max)
ff_median_level = numpy.median(flatfield_data[valid])
ff_std = numpy.std(flatfield_data[valid])
sigma_min = ff_median_level - 2 * ff_std
sigma_max = ff_median_level + 3 * ff_std
#print i, numpy.sum(valid), datapos, ff_median_level, ff_std, sigma_min, sigma_max
if (ff_median_level <= 0):
logger.error("Something went wrong or this is no flatfield frame")
ff_median_level = 1.0
#stdout_write("\b\b\b(% 7.1f) ..." % (ff_median_level))
logger.debug("Found median level % 7.1f ADU, normalizing ..." % (ff_median_level))
# Now normalize all OTAs with the median flatfield level
#stdout_write(" normalizing ...")
# Create a new HDU list for the normalized output
# hdu_out = [] #pyfits.PrimaryHDU(header=hdulist[0].header)]
# for extension in range(0, len(hdulist)):
# if (not is_image_extension(hdulist[extension])):
# hdu_out.append(hdulist[extension])
# continue
# data = hdulist[extension].data.copy()
# data /= ff_median_level
# data[data < 0.1] = numpy.NaN
# new_hdu = pyfits.ImageHDU(data=data, header=hdulist[extension].header)
# #hdulist[extension].data /= ff_median_level
# #hdulist[extension].data[hdulist[extension].data < 0.1] = numpy.NaN
# new_hdu.header.add_history("FF-level: %.1f" % (ff_median_level))
# hdu_out.append(new_hdu)
# hdulist = pyfits.HDUList(hdu_out)
hdu_out = [] #pyfits.PrimaryHDU(header=hdulist[0].header)]
for extension in hdulist:
if (not is_image_extension(extension)):
continue
# data = hdulist[extension].data.copy()
# data /= ff_median_level
# data[data < 0.1] = numpy.NaN
# new_hdu = pyfits.ImageHDU(data=data, header=hdulist[extension].header)
extension.data /= ff_median_level
extension.data[extension.data < 0.1] = numpy.NaN
#hdulist[extension].data /= ff_median_level
#hdulist[extension].data[hdulist[extension].data < 0.1] = numpy.NaN
# new_hdu.header.add_history("FF-level: %.1f" % (ff_median_level))
# hdu_out.append(new_hdu)
# hdulist = pyfits.HDUList(hdu_out)
#
# compute the global gain value and store it in primary header
#
logger.debug("Computing global gain value (sum=%.1f, #=%d)" % (gain_sum, gain_count))
global_gain = gain_sum / gain_count if (gain_count > 0) else -1
hdulist[0].header['GAIN'] = global_gain if (gain_count > 0) else -1.
hdulist[0].header['NGAIN'] = gain_count
logger.debug("writing results to file (%s) ..." % (outputfile))
clobberfile(outputfile)
hdulist.writeto(outputfile, overwrite=True)
logger.info("done!")
if __name__ == "__main__":
binning_x = int(cmdline_arg_set_or_default("-binx", 8))
binning_y = int(cmdline_arg_set_or_default("-biny", 8))
repeats = int(cmdline_arg_set_or_default("-reps", 3))
clean_list = get_clean_cmdline()
if (cmdline_arg_isset("-multi")):
#
# Ok, we should work on a number of files
#
add_filter_to_output_filename = cmdline_arg_isset("-addfilter")
for filename in clean_list[1:]:
directory, basename = os.path.split(filename)
# If -keeppath is specified, put the normalized output file in
# the same directory where we got the files from
if (cmdline_arg_isset("-keeppath")):
if (directory == ""):
out_directory = "."
else:
out_directory = directory
#
# Or maybe the user specified the output directory explicitely?
#
elif (cmdline_arg_isset("-outdir")):
out_directory = get_cmdline_arg("-outdir")
#
# by default, put all output files in the current directory
#
else:
out_directory = "."
#
# Now construct the output filename
#
if (add_filter_to_output_filename):
hdulist = pyfits.open(filename)
filter = hdulist[1].header['FILTER']
outputfile = "%s/%s.norm.%s.fits" % (out_directory, basename[:-5], filter)
hdulist.close()
del hdulist
else:
outputfile = "%s/%s.norm.fits" % (out_directory, basename[:-5])
print(filename, outputfile)
# And finally, do the actual work
normalize_flatfield(filename, outputfile, binning_x=binning_x, binning_y=binning_y, repeats=repeats)
else:
filename = clean_list[1]
outputfile = clean_list[2]
normalize_flatfield(filename, outputfile, binning_x=binning_x, binning_y=binning_y, repeats=repeats)