-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_model.py
59 lines (39 loc) · 1.72 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from model import tflearn_model
import os
import json
import numpy as np
#Do it if you have enough memory
LOAD_DATA_INTO_MEMORY = False
N_EPOCH = 1
config = json.loads(open("config.json", 'r').read())
MODEL_NAME = config['model_name']
DATA_PATH = os.path.join('data', config['save_dir'])
MODEL_PATH = os.path.join(DATA_PATH, 'model')
if not os.path.isdir(MODEL_PATH):
os.mkdir(MODEL_PATH)
*_, file_names = next(os.walk(DATA_PATH))
num_files = len(file_names)
model = tflearn_model()
if os.path.isfile(os.path.join(MODEL_PATH, config['model_save_name'] + '.index')):
print('Found pre-trained model, loading it...')
model.load(os.path.join(MODEL_PATH, config['model_save_name']))
else:
print("No previously trained model found, starting from scratch")
if(LOAD_DATA_INTO_MEMORY):
all_data = [np.load(os.path.join(DATA_PATH, str(i) + ".npy")) for i in range(num_files)]
for epoch in range(N_EPOCH):
print("Running epoch ", epoch)
for i in range(num_files):
if LOAD_DATA_INTO_MEMORY:
data = all_data[i]
else:
data = np.load(os.path.join(DATA_PATH, str(i) + ".npy"))
print(len(data))
X = np.array([image for image in data[:, 1]]).reshape(-1, 200, 66, 3)
y = np.array([data for data in data[:, 0]])
# TODO: Proper train/validation split
X_train, y_train, X_test, y_test = X[:-100], y[:-100], X[-100:], y[-100:]
model.fit({'input': X_train}, {'targets': y_train}, n_epoch=1, batch_size=128,
validation_set=({'input': X_test}, {'targets': y_test}),
validation_batch_size=64, snapshot_step=500, show_metric=True, run_id=MODEL_NAME)
model.save(os.path.join(MODEL_PATH, config['model_save_name']))