forked from nelson1425/EfficientAD
-
Notifications
You must be signed in to change notification settings - Fork 1
/
pretraining.py
413 lines (344 loc) · 14.8 KB
/
pretraining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
#!/usr/bin/python
# -*- coding: utf-8 -*-
import torchvision
import argparse
import os
import random
import copy
import torch.nn.functional as F
import numpy as np
import torch
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.models import Wide_ResNet101_2_Weights
from tqdm import tqdm
from common import (get_pdn_small, get_pdn_medium,
ImageFolderWithoutTarget, InfiniteDataloader)
def get_argparse():
parser = argparse.ArgumentParser(
prog='ProgramName',
description='What the program does',
epilog='Text at the bottom of help')
parser.add_argument('-o', '--output_folder',
default='output/pretraining/1/')
return parser.parse_args()
# variables
model_size = 'small'
imagenet_train_path = './ILSVRC/Data/CLS-LOC/train'
seed = 42
on_gpu = torch.cuda.is_available()
device = 'cuda' if on_gpu else 'cpu'
# constants
out_channels = 384
grayscale_transform = transforms.RandomGrayscale(0.1) # apply same to both
extractor_transform = transforms.Compose([
transforms.Resize((512, 512)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
pdn_transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
def train_transform(image):
image = grayscale_transform(image)
return extractor_transform(image), pdn_transform(image)
def main():
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
config = get_argparse()
os.makedirs(config.output_folder)
backbone = torchvision.models.wide_resnet101_2(
weights=Wide_ResNet101_2_Weights.IMAGENET1K_V1)
extractor = FeatureExtractor(backbone=backbone,
layers_to_extract_from=['layer2', 'layer3'],
device=device,
input_shape=(3, 512, 512))
if model_size == 'small':
pdn = get_pdn_small(out_channels, padding=True)
elif model_size == 'medium':
pdn = get_pdn_medium(out_channels, padding=True)
else:
raise Exception()
train_set = ImageFolderWithoutTarget(imagenet_train_path,
transform=train_transform)
train_loader = DataLoader(train_set, batch_size=16, shuffle=True,
num_workers=7, pin_memory=True)
train_loader = InfiniteDataloader(train_loader)
channel_mean, channel_std = feature_normalization(extractor=extractor,
train_loader=train_loader)
pdn.train()
if on_gpu:
pdn = pdn.cuda()
optimizer = torch.optim.Adam(pdn.parameters(), lr=1e-4, weight_decay=1e-5)
tqdm_obj = tqdm(range(60000))
for iteration, (image_fe, image_pdn) in zip(tqdm_obj, train_loader):
if on_gpu:
image_fe = image_fe.cuda()
image_pdn = image_pdn.cuda()
target = extractor.embed(image_fe)
target = (target - channel_mean) / channel_std
prediction = pdn(image_pdn)
loss = torch.mean((target - prediction)**2)
optimizer.zero_grad()
loss.backward()
optimizer.step()
tqdm_obj.set_description(f'{(loss.item())}')
if iteration % 10000 == 0:
torch.save(pdn,
os.path.join(config.output_folder,
f'teacher_{model_size}_tmp.pth'))
torch.save(pdn.state_dict(),
os.path.join(config.output_folder,
f'teacher_{model_size}_tmp_state.pth'))
torch.save(pdn,
os.path.join(config.output_folder,
f'teacher_{model_size}_final.pth'))
torch.save(pdn.state_dict(),
os.path.join(config.output_folder,
f'teacher_{model_size}_final_state.pth'))
@torch.no_grad()
def feature_normalization(extractor, train_loader, steps=10000):
mean_outputs = []
normalization_count = 0
with tqdm(desc='Computing mean of features', total=steps) as pbar:
for image_fe, _ in train_loader:
if on_gpu:
image_fe = image_fe.cuda()
output = extractor.embed(image_fe)
mean_output = torch.mean(output, dim=[0, 2, 3])
mean_outputs.append(mean_output)
normalization_count += len(image_fe)
if normalization_count >= steps:
pbar.update(steps - pbar.n)
break
else:
pbar.update(len(image_fe))
channel_mean = torch.mean(torch.stack(mean_outputs), dim=0)
channel_mean = channel_mean[None, :, None, None]
mean_distances = []
normalization_count = 0
with tqdm(desc='Computing variance of features', total=steps) as pbar:
for image_fe, _ in train_loader:
if on_gpu:
image_fe = image_fe.cuda()
output = extractor.embed(image_fe)
distance = (output - channel_mean) ** 2
mean_distance = torch.mean(distance, dim=[0, 2, 3])
mean_distances.append(mean_distance)
normalization_count += len(image_fe)
if normalization_count >= steps:
pbar.update(steps - pbar.n)
break
else:
pbar.update(len(image_fe))
channel_var = torch.mean(torch.stack(mean_distances), dim=0)
channel_var = channel_var[None, :, None, None]
channel_std = torch.sqrt(channel_var)
return channel_mean, channel_std
class FeatureExtractor(torch.nn.Module):
def __init__(self, backbone, layers_to_extract_from, device, input_shape):
super(FeatureExtractor, self).__init__()
self.backbone = backbone.to(device)
self.layers_to_extract_from = layers_to_extract_from
self.device = device
self.input_shape = input_shape
self.patch_maker = PatchMaker(3, stride=1)
self.forward_modules = torch.nn.ModuleDict({})
feature_aggregator = NetworkFeatureAggregator(
self.backbone, self.layers_to_extract_from, self.device
)
feature_dimensions = feature_aggregator.feature_dimensions(input_shape)
self.forward_modules["feature_aggregator"] = feature_aggregator
preprocessing = Preprocessing(feature_dimensions, 1024)
self.forward_modules["preprocessing"] = preprocessing
preadapt_aggregator = Aggregator(target_dim=out_channels)
_ = preadapt_aggregator.to(self.device)
self.forward_modules["preadapt_aggregator"] = preadapt_aggregator
self.forward_modules.eval()
@torch.no_grad()
def embed(self, images):
"""Returns feature embeddings for images."""
_ = self.forward_modules["feature_aggregator"].eval()
features = self.forward_modules["feature_aggregator"](images)
features = [features[layer] for layer in self.layers_to_extract_from]
features = [
self.patch_maker.patchify(x, return_spatial_info=True) for x in
features
]
patch_shapes = [x[1] for x in features]
features = [x[0] for x in features]
ref_num_patches = patch_shapes[0]
for i in range(1, len(features)):
_features = features[i]
patch_dims = patch_shapes[i]
_features = _features.reshape(
_features.shape[0], patch_dims[0], patch_dims[1],
*_features.shape[2:]
)
_features = _features.permute(0, -3, -2, -1, 1, 2)
perm_base_shape = _features.shape
_features = _features.reshape(-1, *_features.shape[-2:])
_features = F.interpolate(
_features.unsqueeze(1),
size=(ref_num_patches[0], ref_num_patches[1]),
mode="bilinear",
align_corners=False,
)
_features = _features.squeeze(1)
_features = _features.reshape(
*perm_base_shape[:-2], ref_num_patches[0], ref_num_patches[1]
)
_features = _features.permute(0, -2, -1, 1, 2, 3)
_features = _features.reshape(len(_features), -1,
*_features.shape[-3:])
features[i] = _features
features = [x.reshape(-1, *x.shape[-3:]) for x in features]
# As different feature backbones & patching provide differently
# sized features, these are brought into the correct form here.
features = self.forward_modules["preprocessing"](features)
features = self.forward_modules["preadapt_aggregator"](features)
features = torch.reshape(features, (-1, 64, 64, out_channels))
features = torch.permute(features, (0, 3, 1, 2))
return features
# Image handling classes.
class PatchMaker:
def __init__(self, patchsize, stride=None):
self.patchsize = patchsize
self.stride = stride
def patchify(self, features, return_spatial_info=False):
"""Convert a tensor into a tensor of respective patches.
Args:
x: [torch.Tensor, bs x c x w x h]
Returns:
x: [torch.Tensor, bs * w//stride * h//stride, c, patchsize,
patchsize]
"""
padding = int((self.patchsize - 1) / 2)
unfolder = torch.nn.Unfold(
kernel_size=self.patchsize, stride=self.stride, padding=padding,
dilation=1
)
unfolded_features = unfolder(features)
number_of_total_patches = []
for s in features.shape[-2:]:
n_patches = (
s + 2 * padding - 1 * (self.patchsize - 1) - 1
) / self.stride + 1
number_of_total_patches.append(int(n_patches))
unfolded_features = unfolded_features.reshape(
*features.shape[:2], self.patchsize, self.patchsize, -1
)
unfolded_features = unfolded_features.permute(0, 4, 1, 2, 3)
if return_spatial_info:
return unfolded_features, number_of_total_patches
return unfolded_features
class Preprocessing(torch.nn.Module):
def __init__(self, input_dims, output_dim):
super(Preprocessing, self).__init__()
self.input_dims = input_dims
self.output_dim = output_dim
self.preprocessing_modules = torch.nn.ModuleList()
for input_dim in input_dims:
module = MeanMapper(output_dim)
self.preprocessing_modules.append(module)
def forward(self, features):
_features = []
for module, feature in zip(self.preprocessing_modules, features):
_features.append(module(feature))
return torch.stack(_features, dim=1)
class MeanMapper(torch.nn.Module):
def __init__(self, preprocessing_dim):
super(MeanMapper, self).__init__()
self.preprocessing_dim = preprocessing_dim
def forward(self, features):
features = features.reshape(len(features), 1, -1)
return F.adaptive_avg_pool1d(features,
self.preprocessing_dim).squeeze(1)
class Aggregator(torch.nn.Module):
def __init__(self, target_dim):
super(Aggregator, self).__init__()
self.target_dim = target_dim
def forward(self, features):
"""Returns reshaped and average pooled features."""
# batchsize x number_of_layers x input_dim -> batchsize x target_dim
features = features.reshape(len(features), 1, -1)
features = F.adaptive_avg_pool1d(features, self.target_dim)
return features.reshape(len(features), -1)
class NetworkFeatureAggregator(torch.nn.Module):
"""Efficient extraction of network features."""
def __init__(self, backbone, layers_to_extract_from, device):
super(NetworkFeatureAggregator, self).__init__()
"""Extraction of network features.
Runs a network only to the last layer of the list of layers where
network features should be extracted from.
Args:
backbone: torchvision.model
layers_to_extract_from: [list of str]
"""
self.layers_to_extract_from = layers_to_extract_from
self.backbone = backbone
self.device = device
if not hasattr(backbone, "hook_handles"):
self.backbone.hook_handles = []
for handle in self.backbone.hook_handles:
handle.remove()
self.outputs = {}
for extract_layer in layers_to_extract_from:
forward_hook = ForwardHook(
self.outputs, extract_layer, layers_to_extract_from[-1]
)
if "." in extract_layer:
extract_block, extract_idx = extract_layer.split(".")
network_layer = backbone.__dict__["_modules"][extract_block]
if extract_idx.isnumeric():
extract_idx = int(extract_idx)
network_layer = network_layer[extract_idx]
else:
network_layer = network_layer.__dict__["_modules"][
extract_idx]
else:
network_layer = backbone.__dict__["_modules"][extract_layer]
if isinstance(network_layer, torch.nn.Sequential):
self.backbone.hook_handles.append(
network_layer[-1].register_forward_hook(forward_hook)
)
else:
self.backbone.hook_handles.append(
network_layer.register_forward_hook(forward_hook)
)
self.to(self.device)
def forward(self, images):
self.outputs.clear()
with torch.no_grad():
# The backbone will throw an Exception once it reached the last
# layer to compute features from. Computation will stop there.
try:
_ = self.backbone(images)
except LastLayerToExtractReachedException:
pass
return self.outputs
def feature_dimensions(self, input_shape):
"""Computes the feature dimensions for all layers given input_shape."""
_input = torch.ones([1] + list(input_shape)).to(self.device)
_output = self(_input)
return [_output[layer].shape[1] for layer in
self.layers_to_extract_from]
class ForwardHook:
def __init__(self, hook_dict, layer_name: str, last_layer_to_extract: str):
self.hook_dict = hook_dict
self.layer_name = layer_name
self.raise_exception_to_break = copy.deepcopy(
layer_name == last_layer_to_extract
)
def __call__(self, module, input, output):
self.hook_dict[self.layer_name] = output
if self.raise_exception_to_break:
raise LastLayerToExtractReachedException()
return None
class LastLayerToExtractReachedException(Exception):
pass
if __name__ == '__main__':
main()