title | tags | |||||
---|---|---|---|---|---|---|
25. 接口/ABI |
|
我最近在学cairo-lang
,巩固一下细节,也写一个WTF Cairo极简教程
,供小白们使用。教程基于cairo 2.2.0
版本。
WTF Academy 社群:Discord|微信群|官网 wtf.academy
所有代码和教程开源在 github: github.com/WTFAcademy/WTF-Cairo
在这一章节中,我们将介绍 Cairo 中的接口,并比较它与 Solidity 中接口的异同。
在 Solidity 中,接口是一组没有函数体的函数的定义列表。接口给合约规定了一组必须实现的属性和函数,方便其他合约与它们进行交互,而无需掌握它们的代码。
让我们来看看 ERC20 代币标准的 IERC20
接口。这个接口概述了为遵循这个标准必须实现的函数。
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
interface IERC20 {
event Transfer(address indexed from, address indexed to, uint value);
event Approval(address indexed owner, address indexed spender, uint value);
function totalSupply() external view returns (uint);
function balanceOf(address account) external view returns (uint);
function transfer(address recipient, uint amount) external returns (bool);
function allowance(address owner, address spender) external view returns (uint);
function approve(address spender, uint amount) external returns (bool);
function transferFrom( address sender, address recipient, uint amount) external returns (bool);
}
你可以使用 IERC20
合约与遵循 ERC20 标准的合约进行交互,例如 USDC
,而无需了解其代码。
另外,接口与合约ABI(Application Binary Interface)等价,可以相互转换。
在 Cairo 中,接口是用 #[starknet::interface]
属性标记的 trait
,功能与 Solidity 中类似。规则如下:
- 必须明确声明函数的装饰器。
- 其中的函数不应被实现。
- 不应声明构造函数。
- 不应声明状态变量。
- 不应声明事件(与 Solidity 不同)。
- 所有
view
函数需要包含参数self: @TContractState
,external
函数需要包含参数ref self: TContractState
。
让我们用 Cairo 重写 Solidity 的 IERC20 合约:
use starknet::ContractAddress;
#[starknet::interface]
trait IERC20<TContractState> {
fn get_name(self: @TContractState) -> felt252;
fn get_symbol(self: @TContractState) -> felt252;
fn get_decimals(self: @TContractState) -> u8;
fn get_total_supply(self: @TContractState) -> u256;
fn balance_of(self: @TContractState, account: ContractAddress) -> u256;
fn allowance(self: @TContractState, owner: ContractAddress, spender: ContractAddress) -> u256;
fn transfer(ref self: TContractState, recipient: ContractAddress, amount: u256) -> bool;
fn transfer_from(
ref self: TContractState, sender: ContractAddress, recipient: ContractAddress, amount: u256
) -> bool;
fn approve(ref self: TContractState, spender: ContractAddress, amount: u256) -> bool;
}
让我们实现ERC20,在实现接口时,我们需要实现其中定义的所有函数,见IERC20Impl
部分:
mod Errors {
pub const APPROVE_FROM_ZERO: felt252 = 'ERC20: approve from 0';
pub const APPROVE_TO_ZERO: felt252 = 'ERC20: approve to 0';
pub const TRANSFER_FROM_ZERO: felt252 = 'ERC20: transfer from 0';
pub const TRANSFER_TO_ZERO: felt252 = 'ERC20: transfer to 0';
pub const BURN_FROM_ZERO: felt252 = 'ERC20: burn from 0';
pub const MINT_TO_ZERO: felt252 = 'ERC20: mint to 0';
}
#[starknet::contract]
mod erc20 {
use starknet::get_caller_address;
use starknet::contract_address_const;
use starknet::ContractAddress;
use super::Errors;
#[storage]
struct Storage {
name: felt252,
symbol: felt252,
decimals: u8,
total_supply: u256,
balances: LegacyMap::<ContractAddress, u256>,
allowances: LegacyMap::<(ContractAddress, ContractAddress), u256>,
}
#[event]
#[derive(Drop, PartialEq, starknet::Event)]
enum Event {
Transfer: Transfer,
Approval: Approval,
}
#[derive(Drop, PartialEq, starknet::Event)]
struct Transfer {
#[key]
from: ContractAddress,
#[key]
to: ContractAddress,
value: u256,
}
#[derive(Drop, PartialEq, starknet::Event)]
struct Approval {
#[key]
owner: ContractAddress,
#[key]
spender: ContractAddress,
value: u256,
}
#[constructor]
fn constructor(
ref self: ContractState,
name: felt252,
symbol: felt252
) {
self.name.write(name);
self.symbol.write(symbol);
self.decimals.write(18);
}
#[abi(embed_v0)]
impl IERC20Impl of super::IERC20<ContractState> {
fn get_name(self: @ContractState) -> felt252 {
self.name.read()
}
fn get_symbol(self: @ContractState) -> felt252 {
self.symbol.read()
}
fn get_decimals(self: @ContractState) -> u8 {
self.decimals.read()
}
fn get_total_supply(self: @ContractState) -> u256 {
self.total_supply.read()
}
fn balance_of(self: @ContractState, account: ContractAddress) -> u256 {
self.balances.read(account)
}
fn allowance(
self: @ContractState, owner: ContractAddress, spender: ContractAddress
) -> u256 {
self.allowances.read((owner, spender))
}
fn transfer(ref self: ContractState, recipient: ContractAddress, amount: u256) -> bool {
let sender = get_caller_address();
InternalImpl::_transfer(ref self,sender, recipient, amount);
true
}
fn transfer_from(
ref self: ContractState,
sender: ContractAddress,
recipient: ContractAddress,
amount: u256
) -> bool {
let caller = get_caller_address();
InternalImpl::_spend_allowance(ref self, sender, caller, amount);
InternalImpl::_transfer(ref self, sender, recipient, amount);
true
}
fn approve(ref self: ContractState, spender: ContractAddress, amount: u256) -> bool {
let caller = get_caller_address();
InternalImpl::_approve(ref self, caller, spender, amount);
true
}
}
#[generate_trait]
impl InternalImpl of erc20 {
fn _transfer(
ref self: ContractState,
sender: ContractAddress,
recipient: ContractAddress,
amount: u256
) {
assert(!sender.is_zero(), Errors::TRANSFER_FROM_ZERO);
assert(!recipient.is_zero(), Errors::TRANSFER_TO_ZERO);
self.balances.write(sender, self.balances.read(sender) - amount);
self.balances.write(recipient, self.balances.read(recipient) + amount);
self.emit(Transfer { from: sender, to: recipient, value: amount });
}
fn _spend_allowance(
ref self: ContractState,
owner: ContractAddress,
spender: ContractAddress,
amount: u256
) {
let allowance = self.allowances.read((owner, spender));
InternalImpl::_approve(ref self, owner, spender, allowance - amount);
}
fn _approve(
ref self: ContractState,
owner: ContractAddress,
spender: ContractAddress,
amount: u256
) {
assert(!owner.is_zero(), Errors::TRANSFER_FROM_ZERO);
assert(!spender.is_zero(), Errors::APPROVE_TO_ZERO);
self.allowances.write((owner, spender), amount);
self.emit(Approval { owner, spender, value: amount });
}
fn _mint(ref self: ContractState, recipient: ContractAddress, amount: u256) {
assert(!recipient.is_zero(), Errors::MINT_TO_ZERO);
let supply = self.total_supply.read() + amount;
self.total_supply.write(supply);
let balance = self.balances.read(recipient) + amount;
self.balances.write(recipient, balance);
self.emit(Transfer {from: contract_address_const::<0>(), to: recipient, value: amount});
}
fn _burn(ref self: ContractState, account: ContractAddress, amount: u256) {
assert(!account.is_zero(), Errors::BURN_FROM_ZERO);
let supply = self.total_supply.read() - amount;
self.total_supply.write(supply);
let balance = self.balances.read(account) - amount;
self.balances.write(account, balance);
self.emit(Transfer { from: account, to: contract_address_const::<0>(), value: amount});
}
}
}
该合约在remix中,编译没有问题,但declare时有时会报错,且#[abi(embed_v0)]
不是外部函数,无法直接在remix中进行交互,所有代码文件中,将接口改为外部函数,且删除了事件。并且为了增加交互性,添加了mint和burn函数直接为调用者铸造和销毁代币,其余过程无修改。
本章我们以 IERC20 为例,探讨了 Cairo 和 Solidity 中接口的异同。接口给合约规定了一组必须实现的属性和函数,方便其他合约与它们进行交互,而无需掌握它们的代码。