-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathestimators.py
514 lines (442 loc) · 18.5 KB
/
estimators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
'''
Custom BN structure estimators
'''
import itertools
import numpy as np
import pandas as pd
import networkx as nx
import matplotlib.pyplot as plt
from pgmpy.estimators import StructureEstimator
from pgmpy.base import DAG
from sklearn.metrics import mutual_info_score
def conditional_mutual_info_score(xi, xj, c):
'''
Compute conditional mutual information I(Xi, Xj | C), given
numpy arrays or pandas series for xi and xj and a numpy matrix
or a a pandas dataframe for c.
In this implementation c can be given as a single column or as
multiple columns.
'''
conditions = pd.DataFrame(c)
if len(conditions.columns) == 0:
return mutual_info_score(xi, xj)
cond_mutual_info = 0
for _, cond in conditions.iteritems():
unique_condition_values = cond.unique()
for i in unique_condition_values:
condition_proba = np.sum(cond == i) / len(cond)
cond_mutual_info += mutual_info_score(
xi[cond == i], xj[cond == i],
) * condition_proba
return np.sum(cond_mutual_info)
def simple_conditional_mutual_info_score(df, xi, xj, c):
'''
Compute conditional mutual information I(Xi, Xj | C), given
a pandas dataframe and column names for xi, xj and c.
In this implementation c can only be given as a single column.
'''
unique_xi_values = df[xi].unique()
unique_xj_values = df[xj].unique()
unique_c_values = df[c].unique()
scores = []
for i, j, k in itertools.product(unique_xi_values, unique_xj_values, unique_c_values):
prob_ijk = len(
df[(df[xi] == i) & (df[xj] == j) & (df[c] == k)]
) / len(df)
rdf = df[df[c] == k]
prob_ij_k = len(rdf[(rdf[xi] == i) & (rdf[xj] == j)]) / len(rdf)
prob_i_k = len(rdf[rdf[xi] == i]) / len(rdf)
prob_j_k = len(rdf[rdf[xj] == j]) / len(rdf)
current_score = prob_ijk * np.log(
prob_ij_k / (prob_i_k * prob_j_k + 10e-5)
)
scores.append(current_score)
return np.nansum(scores)
class TreeAugmentedNaiveBayesSearch(StructureEstimator):
def __init__(self, data, class_node, root_node=None, **kwargs):
'''
Search class for learning tree-augmented naive bayes (TAN) graph structure with a given set of variables.
TAN is an extension of Naive Bayes classifer and allows a tree structure over the independent variables
to account for interaction.
See https://github.com/pgmpy/pgmpy/pull/1266/commits for reference.
'''
self.class_node = class_node
self.root_node = root_node
super().__init__(data, **kwargs)
def estimate(self):
'''
Estimates the DAG structure that fits best to the given data set using the Chow-Liu algorithm.
Only estimates network structure, no parametrization.
'''
if self.class_node not in self.data.columns:
raise ValueError("Class node must exist in data")
if self.root_node is not None and self.root_node not in self.data.columns:
raise ValueError("Root node must exist in data")
graph = nx.Graph()
df_features = self.data.loc[:, self.data.columns != self.class_node]
total_cols = len(df_features.columns)
for i in range(total_cols):
from_node = df_features.columns[i]
graph.add_node(from_node)
for j in range(i + 1, total_cols):
to_node = df_features.columns[j]
graph.add_node(to_node)
mi = mutual_info_score(
df_features.iloc[:, i], df_features.iloc[:, j]
)
graph.add_edge(from_node, to_node, weight=mi)
tree = nx.maximum_spanning_tree(graph)
if self.root_node:
digraph = nx.bfs_tree(tree, self.root_node)
else:
digraph = nx.bfs_tree(tree, df_features.columns[0])
for node in df_features.columns:
digraph.add_edge(self.class_node, node)
return DAG(digraph)
class BNAugmentedNaiveBayesSearch(StructureEstimator):
def __init__(self, data, class_node, epsilon=0.003, **kwargs):
'''
Search class for learning BN-augmented naive Bayes (BAN) graph structure with a given set of variables.
BAN is an extension of Naive Bayes classifer which allows a graph structure over the independent variables
to account for interaction.
See http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.53.3241&rep=rep1&type=pdf for reference.
'''
self.class_node = class_node
self.epsilon = epsilon
super().__init__(data, **kwargs)
def estimate(self):
'''
Estimates the DAG structure that fits best to the given data set using the CBL2 algorithm.
Only estimates network structure, no parametrization.
'''
if self.class_node not in self.data.columns:
raise ValueError("Class node must exist in data")
################## Drafting #####################
L = []
graph = nx.Graph()
df_features = self.data.loc[
:, self.data.columns != self.class_node
]
total_cols = len(df_features.columns)
graph.add_nodes_from(df_features.columns)
for i in range(total_cols):
from_node = df_features.columns[i]
for j in range(i + 1, total_cols):
to_node = df_features.columns[j]
mi = conditional_mutual_info_score(
df_features.iloc[:, i], df_features.iloc[:, j],
self.data.loc[:, self.class_node]
)
if mi > self.epsilon:
L.append((from_node, to_node, mi))
# Sort pairs of nodes by decreasing mutual information
L.sort(key=lambda tup: tup[2], reverse=True)
# Get the first two pairs of nodes and add corresponding edges
from_node, to_node, mi = L.pop(0)
graph.add_edge(from_node, to_node, weight=mi)
from_node, to_node, mi = L.pop(0)
graph.add_edge(from_node, to_node, weight=mi)
# If there is no adjacency path between a pair of nodes, add the corresponding edge
lenght = len(L)
i = 0
while i < lenght:
from_node, to_node, mi = L[i]
if len(graph.edges) - 1 == len(graph.nodes):
break
if not nx.has_path(graph, from_node, to_node):
graph.add_edge(from_node, to_node, weight=mi)
L.pop(i)
lenght -= 1
i -= 1
i += 1
################## Thickening ###################
for i in range(len(L)):
from_node, to_node, mi = L[i]
if not self.try_to_separate_a(graph, from_node, to_node):
graph.add_edge(from_node, to_node, weight=mi)
################## Thinning #####################
edges = list(graph.edges)
for edge in edges:
from_node, to_node = edge
graph.remove_edge(from_node, to_node)
if (nx.has_path(graph, from_node, to_node) and
not self.try_to_separate_a(graph, from_node, to_node)):
graph.add_edge(from_node, to_node)
edges = list(graph.edges)
for edge in edges:
from_node, to_node = edge
graph.remove_edge(from_node, to_node)
if (nx.has_path(graph, from_node, to_node) and
not self.try_to_separate_b(graph, from_node, to_node)):
graph.add_edge(from_node, to_node)
# ORIENT EDGES DOES NOT WORK
# oriented_edges = self.orient_edges(graph)
# digraph = nx.DiGraph(oriented_edges)
digraph = nx.dfs_tree(graph, df_features.columns[0])
for node in df_features.columns:
digraph.add_edge(self.class_node, node)
return DAG(digraph)
def try_to_separate_a(self, graph, node1, node2):
node1_neighbors = set(nx.neighbors(graph, node1))
node2_neighbors = set(nx.neighbors(graph, node2))
n1 = set()
n2 = set()
for path in nx.all_simple_paths(graph, source=node1, target=node2):
for node in path[1:-1]:
if node in node1_neighbors:
n1.add(node)
if node in node2_neighbors:
n2.add(node)
# Remove the currently known child-nodes of node1 from N1
# and child-nodes of node2 from N2 (?)
if len(n1) > len(n2):
n1, n2 = n2, n1
skip_step = False
n2_used = False
c = set(n1)
while True:
if not skip_step:
v = conditional_mutual_info_score(
self.data[node1], self.data[node2],
self.data[c.union({self.class_node})]
)
if v < self.epsilon:
return True
if len(c) == 1:
if not n2_used:
c = set(n2)
n2_used = True
else:
return False
else:
values = []
conditions = []
for node in graph.nodes:
ci = {n for n in c if n != node}
conditions.append(ci)
vi = conditional_mutual_info_score(
self.data[node1], self.data[node2],
self.data[ci.union({self.class_node})]
)
values.append(vi)
min_index = np.argmin(values)
vm = values[min_index]
cm = conditions[min_index]
if vm < self.epsilon:
return True
elif vm > v:
if not n2_used:
c = set(n2)
n2_used = True
else:
return False
else:
v = vm
c = cm
skip_step = True
continue
skip_step = False
return False
def try_to_separate_b(self, graph, node1, node2):
node1_neighbors = set(nx.neighbors(graph, node1))
node2_neighbors = set(nx.neighbors(graph, node2))
n1 = set()
n2 = set()
paths = list(nx.all_simple_paths(graph, source=node1, target=node2))
for path in paths:
for node in path[1:-1]:
if node in node1_neighbors:
n1.add(node)
if node in node2_neighbors:
n2.add(node)
n1_prime = set()
n1_neighbors = set()
for n in n1:
n1_neighbors.update(set(nx.neighbors(graph, n)))
for path in paths:
for node in path[1:-1]:
if node in n1_neighbors and node not in n1:
n1_prime.add(node)
n2_prime = set()
n2_neighbors = set()
for n in n2:
n2_neighbors.update(set(nx.neighbors(graph, n)))
for path in paths:
for node in path[1:-1]:
if node in n2_neighbors and node not in n2:
n2_prime.add(node)
if len(n1) + len(n1_prime) < len(n2) + len(n2_prime):
c = set(n1)
c.update(set(n1_prime))
else:
c = set(n2)
c.update(set(n2_prime))
while True:
v = conditional_mutual_info_score(
self.data[node1], self.data[node2],
self.data[c.union({self.class_node})]
)
if v < self.epsilon:
return True
c_prime = set(c)
for i in c:
ci = {n for n in c if n != i}
vi = conditional_mutual_info_score(
self.data[node1], self.data[node2],
self.data[ci.union({self.class_node})]
)
if vi < self.epsilon:
return True
elif vi <= v + self.epsilon and i in c_prime:
c_prime.discard(i)
if len(c_prime) < len(c):
c = set(c_prime)
else:
return False
return False
def orient_edges(self, graph):
oriented_edges = set()
for s1, s2 in itertools.product(graph.nodes, repeat=2):
new_oriented_edges = self.orient_edge(graph, s1, s2)
for a, b in new_oriented_edges:
if (b, a) not in oriented_edges:
oriented_edges.add((a, b))
oriented_edges_list = list(oriented_edges)
lenght = len(oriented_edges_list)
for i in range(lenght):
a, b = oriented_edges_list[i]
for c in graph.nodes:
c_neighbors = list(nx.neighbors(graph, c))
if (b in c_neighbors and a not in c_neighbors and
(b, c) not in oriented_edges and (c, b) not in oriented_edges):
oriented_edges.add((b, c))
not_oriented_edges = set(graph.edges).difference(oriented_edges)
oriented_edges = list(oriented_edges)
tmp_graph = nx.DiGraph(oriented_edges)
for edge in not_oriented_edges:
a, b = edge
if (a in tmp_graph.nodes and b in tmp_graph.nodes and nx.has_path(tmp_graph, a, b) and
(b, a) not in oriented_edges):
oriented_edges.append((a, b))
return oriented_edges
def orient_edge(self, graph, s1, s2):
oriented_edges = []
n1 = []
n2 = []
s1_neighbors = list(nx.neighbors(graph, s1))
s2_neighbors = list(nx.neighbors(graph, s2))
inter = set(s1_neighbors).intersection(set(s2_neighbors))
paths = list(nx.all_simple_paths(graph, source=s1, target=s2))
if (s1, s2) not in graph.edges and len(inter) > 0:
for path in paths:
for node in path[1:-1]:
if node in s1_neighbors:
n1.append(node)
if node in s2_neighbors:
n2.append(node)
n1_prime = []
n2_prime = []
n1_neighbors = [list(nx.neighbors(graph, n)) for n in n1]
n2_neighbors = [list(nx.neighbors(graph, n)) for n in n2]
for path in paths:
for node in path[1:-1]:
if node not in n1 and node in n1_neighbors:
n1_prime.append(node)
if node not in n2 and node in n2_neighbors:
n2_prime.append(node)
if len(n1) + len(n1_prime) < len(n2) + len(n2_prime):
c = list(n1)
c.extend(list(n1_prime))
else:
c = list(n2)
c.extend(list(n2_prime))
while True:
v = conditional_mutual_info_score(
self.data[s1], self.data[s2],
self.data[c + [self.class_node]]
)
if v < self.epsilon:
return oriented_edges
c_prime = list(c)
for i in c:
ci = [n for n in c if n != i]
vi = conditional_mutual_info_score(
self.data[s1], self.data[s2],
self.data[ci + [self.class_node]]
)
if vi <= v + self.epsilon:
c_prime = [n for n in c_prime if n != i]
oriented_edges.append((s1, i))
oriented_edges.append((s2, i))
elif vi <= self.epsilon:
return oriented_edges
if len(c_prime) < len(c):
c = list(c_prime)
else:
break
return oriented_edges
class ForestAugmentedNaiveBayesSearch(StructureEstimator):
def __init__(self, data, class_node, root_node=None, **kwargs):
'''
Search class for learning forest-augmented naive bayes (FAN) graph structure with a given set of variables.
FAN is an extension of Naive Bayes classifer and allows a forest structure over the independent variables
to account for interaction.
See http://www.cs.unb.ca/~hzhang/publications/DASFAA05-final.pdf for reference.
'''
self.class_node = class_node
self.root_node = root_node
super().__init__(data, **kwargs)
def estimate(self):
'''
Estimates the DAG structure that fits best to the given data set using the Chow-Liu algorithm.
Only estimates network structure, no parametrization.
'''
if self.class_node not in self.data.columns:
raise ValueError("Class node must exist in data")
if self.root_node is not None and self.root_node not in self.data.columns:
raise ValueError("Root node must exist in data")
graph = nx.Graph()
df_features = self.data.loc[:, self.data.columns != self.class_node]
total_cols = len(df_features.columns)
cmis = []
for i in range(total_cols):
from_node = df_features.columns[i]
graph.add_node(from_node)
for j in range(i + 1, total_cols):
to_node = df_features.columns[j]
graph.add_node(to_node)
cmi = conditional_mutual_info_score(
df_features.iloc[:, i], df_features.iloc[:, j],
self.data.loc[:, self.class_node]
)
cmis.append(cmi)
graph.add_edge(from_node, to_node, weight=cmi)
cmi_avg = np.mean(cmis)
tree = nx.maximum_spanning_tree(graph)
if not self.root_node:
root_node = df_features.columns[0]
root_node_mi = mutual_info_score(
df_features.iloc[:, 0], self.data.loc[:, self.class_node]
)
for i in range(1, total_cols):
node = df_features.columns[i]
mi = mutual_info_score(
df_features.iloc[:, i], self.data.loc[:, self.class_node]
)
if mi > root_node_mi:
root_node = node
root_node_mi = mi
self.root_node = root_node
digraph = nx.bfs_tree(tree, self.root_node)
edges = list(digraph.edges)
weights = nx.get_edge_attributes(tree, 'weight')
for from_node, to_node in edges:
key = (
(from_node, to_node) if (from_node, to_node) in weights
else (to_node, from_node)
)
if weights[key] < cmi_avg:
digraph.remove_edge(from_node, to_node)
for node in df_features.columns:
digraph.add_edge(self.class_node, node)
return DAG(digraph)