-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
executable file
·95 lines (76 loc) · 3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import tensorflow as tf
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
from utils import *
from model import UTPM
DTYPE = tf.float32
PAD_VALUE = 0
NUM_WORKERS = 4
if __name__ == "__main__":
args = parse_args()
movie_tag_rel, tag_encoder, tag_decoder = extract_movie_tag_relation("data/ml-20m/genome-scores.csv", args.tags_per_movie, args.min_tag_score, args.min_tag_freq)
movie_cate_rel, cate_encoder, cate_decoder = extract_movie_cate_relation("data/ml-20m/movies.csv")
all_tags = list(set(tag_encoder.values()))
print("Number of tags: ", len(tag_encoder))
if args.prepare_tfrecords:
print("Start building user samples")
all_users_samples = build_user_samples_mp(
"data/ml-20m/ratings.csv",
all_tags,
movie_tag_rel,
movie_cate_rel,
NUM_WORKERS,
args
)
print("Samples build done.")
# randomly split train and test users and their samples
train_samples, test_samples = split_train_test(all_users_samples)
print("Start writing tf records.")
write_tf_records(train_samples, 'data/train_samples.tfrecords')
write_tf_records(test_samples, 'data/test_samples.tfrecords')
train_dataset, test_dataset = read_tf_records(args.batch_size)
model = UTPM(
len(tag_decoder),
len(cate_decoder),
args.E,
args.T,
args.D,
args.C,
args.U,
DTYPE,
PAD_VALUE,
args.lr,
args.log_step,
args.epochs,
args.use_cross
)
model.train(train_dataset)
save(model, 'model.pickle')
model = load('model.pickle')
# tag raw id -> embedding
tags_embeds = {}
for encoded_tag_id, tag_embed in enumerate(model.query_tags_embeds()):
tags_embeds[tag_decoder[encoded_tag_id]] = tag_embed
users_embeds = evaluate(model, test_dataset, tags_embeds, args.U)
tag_names = read_tag_name('data/ml-20m/genome-tags.csv')
_tag_names, tag_vecs = [], []
for tag_id, tag_vec in tags_embeds.items():
_tag_names.append(tag_names[tag_id])
tag_vecs.append(tag_vec)
tsne(np.array(tag_vecs), 'pics/tags.png', names=_tag_names)
tsne(users_embeds, 'pics/users.png')
# Print out tag similarity search result
# NOTE: these may print out a lot to the terminal
tag_vecs, idx2name = [], {}
for idx, (tag_raw_id, tag_vec) in enumerate(tags_embeds.items()):
idx2name[idx] = tag_names[tag_raw_id]
tag_vecs.append(tag_vec)
tag_vecs = np.array(tag_vecs)
search_index = faiss.IndexFlatIP(args.U)
search_index.add(tag_vecs)
all_dis, all_neigh = search_index.search(tag_vecs, k=5)
for idx, (dis, neigh) in enumerate(zip(all_dis, all_neigh)):
target_tag = idx2name[idx]
print("{} -->".format(target_tag))
for _dis, idx in zip(dis, neigh):
print('\t', idx2name[idx], _dis)