-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchatbotgit.py
363 lines (324 loc) · 17.1 KB
/
chatbotgit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
from __future__ import print_function
import argparse
import copy
import html
import os
import pickle
import sys
import numpy as np
import tensorflow as tf
from model import Model
async def main(engine):
tf.compat.v1.disable_eager_execution()
assert sys.version_info >= (3, 3), \
"Must be run in Python 3.3 or later. You are running {}".format(sys.version)
parser = argparse.ArgumentParser()
parser.add_argument('--save_dir', type=str, default='models/reddit',
help='model directory to store checkpointed models')
parser.add_argument('-n', type=int, default=500,
help='number of characters to sample')
parser.add_argument('--prime', type=str, default=' ',
help='prime text')
parser.add_argument('--beam_width', type=int, default=2,
help='Width of the beam for beam search, default 2')
parser.add_argument('--temperature', type=float, default=1.0,
help='sampling temperature'
'(lower is more conservative, default is 1.0, which is neutral)')
parser.add_argument('--topn', type=int, default=-1,
help='at each step, choose from only this many most likely characters;'
'set to <0 to disable top-n filtering.')
parser.add_argument('--relevance', type=float, default=-1.,
help='amount of "relevance masking/MMI (disabled by default):"'
'higher is more pressure, 0.4 is probably as high as it can go without'
'noticeably degrading coherence;'
'set to <0 to disable relevance masking')
args = parser.parse_args()
await sample_main(args, engine)
def get_paths(input_path):
if os.path.isfile(input_path):
# Passed a model rather than a checkpoint directory
model_path = input_path
save_dir = os.path.dirname(model_path)
elif os.path.exists(input_path):
# Passed a checkpoint directory
save_dir = input_path
checkpoint = tf.compat.v1.train.get_checkpoint_state(save_dir)
if checkpoint:
model_path = checkpoint.model_checkpoint_path
else:
raise ValueError('Checkpoint not found in {}.'.format(save_dir))
else:
raise ValueError('save_dir is not a valid path.')
return model_path, os.path.join(save_dir, 'config.pkl'), os.path.join(save_dir, 'chars_vocab.pkl')
async def sample_main(args, engine):
model_path, config_path, vocab_path = get_paths(args.save_dir)
# Arguments passed to sample.py direct us to a saved model.
# Load the separate arguments by which that model was previously trained.
# That's saved_args. Use those to load the model.
with open(config_path, 'rb') as f:
saved_args = pickle.load(f)
# Separately load chars and vocab from the save directory.
with open(vocab_path, 'rb') as f:
chars, vocab = pickle.load(f)
# Create the model from the saved arguments, in inference mode.
print("Creating model...")
saved_args.batch_size = args.beam_width
net = Model(saved_args, True)
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
# Make tensorflow less verbose; filter out info (1+) and warnings (2+) but not errors (3).
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
with tf.compat.v1.Session(config=config) as sess:
tf.compat.v1.global_variables_initializer().run()
saver = tf.compat.v1.train.Saver(net.save_variables_list())
# Restore the saved variables, replacing the initialized values.
print("Restoring weights...")
saver.restore(sess, model_path)
await chatbot(net, sess, chars, vocab, args.n, args.beam_width,
args.relevance, args.temperature, args.topn, engine)
def initial_state(net, sess):
# Return freshly initialized model states.
return sess.run(net.zero_state)
def forward_text(net, sess, states, relevance, vocab, prime_text=None):
if prime_text is not None:
for char in prime_text:
if relevance > 0.:
# Automatically forward the primary net.
_, states[0] = net.forward_model(sess, states[0], vocab[char])
# If the token is newline, reset the mask net state; else, forward it.
if vocab[char] == '\n':
states[1] = initial_state(net, sess)
else:
_, states[1] = net.forward_model(sess, states[1], vocab[char])
else:
_, states = net.forward_model(sess, states, vocab[char])
return states
def sanitize_text(vocab, text): # Strip out characters that are not part of the net's vocab.
return ''.join(i for i in text if i in vocab)
def initial_state_with_relevance_masking(net, sess, relevance):
if relevance <= 0.:
return initial_state(net, sess)
else:
return [initial_state(net, sess), initial_state(net, sess)]
def possibly_escaped_char(raw_chars):
if raw_chars[-1] == ';':
for i, c in enumerate(reversed(raw_chars[:-1])):
if c == ';' or i > 8:
return raw_chars[-1]
elif c == '&':
escape_seq = "".join(raw_chars[-(i + 2):])
new_seq = html.unescape(escape_seq)
backspace_seq = "".join(['\b'] * (len(escape_seq) - 1))
diff_length = len(escape_seq) - len(new_seq) - 1
return backspace_seq + new_seq + "".join([' '] * diff_length) + "".join(['\b'] * diff_length)
return raw_chars[-1]
async def chatbot(net, sess, chars, vocab, max_length, beam_width, relevance, temperature, topn, engine):
states = initial_state_with_relevance_masking(net, sess, relevance)
await engine.bot_speak('Talk to me!')
while True:
user_input = await engine.record_main()
if 'exit' in user_input:
break
elif 'text' in user_input:
user_input = input('Me:> ')
user_command_entered, reset, states, relevance, temperature, topn, beam_width = process_user_command(
user_input, states, relevance, temperature, topn, beam_width)
if reset:
states = initial_state_with_relevance_masking(net, sess, relevance)
if not user_command_entered:
states = forward_text(net, sess, states, relevance, vocab, sanitize_text(vocab, "> " + user_input + "\n>"))
computer_response_generator = beam_search_generator(sess=sess, net=net,
initial_state=copy.deepcopy(states),
initial_sample=vocab[' '],
early_term_token=vocab['\n'], beam_width=beam_width,
forward_model_fn=forward_with_mask,
forward_args={'relevance': relevance,
'mask_reset_token': vocab['\n'],
'forbidden_token': vocab['>'],
'temperature': temperature, 'topn': topn})
out_chars = []
print('\nAlexis\' thoughts: ')
await engine.bot_speak('**I\'m thinking...**')
for i, char_token in enumerate(computer_response_generator):
out_chars.append(chars[char_token])
print(possibly_escaped_char(out_chars), end='', flush=True)
states = forward_text(net, sess, states, relevance, vocab, chars[char_token])
if i >= max_length:
break
states = forward_text(net, sess, states, relevance, vocab, sanitize_text(vocab, "\n> "))
text = ''.join(out_chars)
await engine.bot_speak(text)
def process_user_command(user_input, states, relevance, temperature, topn, beam_width):
user_command_entered = False
reset = False
try:
if user_input.startswith('--temperature '):
user_command_entered = True
temperature = max(0.001, float(user_input[len('--temperature '):]))
print("[Temperature set to {}]".format(temperature))
elif user_input.startswith('--relevance '):
user_command_entered = True
new_relevance = float(user_input[len('--relevance '):])
if relevance <= 0. and new_relevance > 0.:
states = [states, copy.deepcopy(states)]
elif relevance > 0. and new_relevance <= 0.:
states = states[0]
relevance = new_relevance
print("[Relevance disabled]" if relevance <= 0. else "[Relevance set to {}]".format(relevance))
elif user_input.startswith('--topn '):
user_command_entered = True
topn = int(user_input[len('--topn '):])
print("[Top-n filtering disabled]" if topn <= 0 else "[Top-n filtering set to {}]".format(topn))
elif user_input.startswith('--beam_width '):
user_command_entered = True
beam_width = max(1, int(user_input[len('--beam_width '):]))
print("[Beam width set to {}]".format(beam_width))
elif user_input.startswith('--reset'):
user_command_entered = True
reset = True
print("[Model state reset]")
except ValueError:
print("[Value error with provided argument.]")
return user_command_entered, reset, states, relevance, temperature, topn, beam_width
def consensus_length(beam_outputs, early_term_token):
for l in range(len(beam_outputs[0])):
if l > 0 and beam_outputs[0][l - 1] == early_term_token:
return l - 1, True
for b in beam_outputs[1:]:
if beam_outputs[0][l] != b[l]: return l, False
return l, False
def scale_prediction(prediction, temperature):
if temperature == 1.0:
return prediction # Temperature 1.0 makes no change
np.seterr(divide='ignore')
scaled_prediction = np.log(prediction) / temperature
scaled_prediction = scaled_prediction - np.logaddexp.reduce(scaled_prediction)
scaled_prediction = np.exp(scaled_prediction)
np.seterr(divide='warn')
return scaled_prediction
def forward_with_mask(sess, net, states, input_sample, forward_args):
# forward_args is a dictionary containing arguments for generating probabilities.
relevance = forward_args['relevance']
mask_reset_token = forward_args['mask_reset_token']
forbidden_token = forward_args['forbidden_token']
temperature = forward_args['temperature']
topn = forward_args['topn']
if relevance <= 0.:
# No relevance masking.
prob, states = net.forward_model(sess, states, input_sample)
else:
# states should be a 2-length list: [primary net state, mask net state].
if input_sample == mask_reset_token:
# Reset the mask probs when reaching mask_reset_token (newline).
states[1] = initial_state(net, sess)
primary_prob, states[0] = net.forward_model(sess, states[0], input_sample)
primary_prob /= sum(primary_prob)
mask_prob, states[1] = net.forward_model(sess, states[1], input_sample)
mask_prob /= sum(mask_prob)
prob = np.exp(np.log(primary_prob) - relevance * np.log(mask_prob))
# Mask out the forbidden token (">") to prevent the bot from deciding the chat is over)
prob[forbidden_token] = 0
# Normalize probabilities so they sum to 1.
prob = prob / sum(prob)
# Apply temperature.
prob = scale_prediction(prob, temperature)
# Apply top-n filtering if enabled
if topn > 0:
prob[np.argsort(prob)[:-topn]] = 0
prob = prob / sum(prob)
return prob, states
def beam_search_generator(sess, net, initial_state, initial_sample,
early_term_token, beam_width, forward_model_fn, forward_args):
'''Run beam search! Yield consensus tokens sequentially, as a generator;
return when reaching early_term_token (newline).
Args:
sess: tensorflow session reference
net: tensorflow net graph (must be compatible with the forward_net function)
initial_state: initial hidden state of the net
initial_sample: single token (excluding any seed/priming material)
to start the generation
early_term_token: stop when the beam reaches consensus on this token
(but do not return this token).
beam_width: how many beams to track
forward_model_fn: function to forward the model, must be of the form:
probability_output, beam_state =
forward_model_fn(sess, net, beam_state, beam_sample, forward_args)
(Note: probability_output has to be a valid probability distribution!)
tot_steps: how many tokens to generate before stopping,
unless already stopped via early_term_token.
Returns: a generator to yield a sequence of beam-sampled tokens.'''
# Store state, outputs and probabilities for up to args.beam_width beams.
# Initialize with just the one starting entry; it will branch to fill the beam
# in the first step.
beam_states = [initial_state] # Stores the best activation states
beam_outputs = [[initial_sample]] # Stores the best generated output sequences so far.
beam_probs = [1.] # Stores the cumulative normalized probabilities of the beams so far.
while True:
# Keep a running list of the best beam branches for next step.
# Don't actually copy any big data structures yet, just keep references
# to existing beam state entries, and then clone them as necessary
# at the end of the generation step.
new_beam_indices = []
new_beam_probs = []
new_beam_samples = []
# Iterate through the beam entries.
for beam_index, beam_state in enumerate(beam_states):
beam_prob = beam_probs[beam_index]
beam_sample = beam_outputs[beam_index][-1]
# Forward the model.
prediction, beam_states[beam_index] = forward_model_fn(
sess, net, beam_state, beam_sample, forward_args)
# Sample best_tokens from the probability distribution.
# Sample from the scaled probability distribution beam_width choices
# (but not more than the number of positive probabilities in scaled_prediction).
count = min(beam_width, sum(1 if p > 0. else 0 for p in prediction))
best_tokens = np.random.choice(len(prediction), size=count,
replace=False, p=prediction)
for token in best_tokens:
prob = prediction[token] * beam_prob
if len(new_beam_indices) < beam_width:
# If we don't have enough new_beam_indices, we automatically qualify.
new_beam_indices.append(beam_index)
new_beam_probs.append(prob)
new_beam_samples.append(token)
else:
# Sample a low-probability beam to possibly replace.
np_new_beam_probs = np.array(new_beam_probs)
inverse_probs = -np_new_beam_probs + max(np_new_beam_probs) + min(np_new_beam_probs)
inverse_probs = inverse_probs / sum(inverse_probs)
sampled_beam_index = np.random.choice(beam_width, p=inverse_probs)
if new_beam_probs[sampled_beam_index] <= prob:
# Replace it.
new_beam_indices[sampled_beam_index] = beam_index
new_beam_probs[sampled_beam_index] = prob
new_beam_samples[sampled_beam_index] = token
# Replace the old states with the new states, first by referencing and then by copying.
already_referenced = [False] * beam_width
new_beam_states = []
new_beam_outputs = []
for i, new_index in enumerate(new_beam_indices):
if already_referenced[new_index]:
new_beam = copy.deepcopy(beam_states[new_index])
else:
new_beam = beam_states[new_index]
already_referenced[new_index] = True
new_beam_states.append(new_beam)
new_beam_outputs.append(beam_outputs[new_index] + [new_beam_samples[i]])
# Normalize the beam probabilities so they don't drop to zero
beam_probs = new_beam_probs / sum(new_beam_probs)
beam_states = new_beam_states
beam_outputs = new_beam_outputs
# Prune the agreed portions of the outputs
# and yield the tokens on which the beam has reached consensus.
l, early_term = consensus_length(beam_outputs, early_term_token)
if l > 0:
for token in beam_outputs[0][:l]:
yield token
beam_outputs = [output[l:] for output in beam_outputs]
if early_term:
return
# if __name__ == '__main__':
# core = pyttsx3.init()
# core.setProperty('rate', 190)
# engine = AudioEngine(core)
# main(engine)