forked from junxia97/OT-Cleaner
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsinkhornknopp.py
173 lines (164 loc) · 6.59 KB
/
sinkhornknopp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import torch
import torch.nn as nn
import time
import numpy as np
from util import py_softmax,MovingAverage
from multigpu import gpu_mul_Ax, gpu_mul_xA, aggreg_multi_gpu, gpu_mul_AB
def cpu_sk(self):
""" Sinkhorn Knopp optimization on CPU
"""
N = len(self.pseudo_loader.dataset)
if self.hc == 1:
self.PS = np.zeros((N, self.K), dtype=self.dtype)
else:
self.PS_pre = np.zeros((N, self.presize), dtype=self.dtype)
now = time.time()
l_dl = len(self.pseudo_loader)
time.time()
batch_time = MovingAverage(intertia=0.9)
self.model.headcount = 1
for batch_idx, (data, _,_1,_selected) in enumerate(self.pseudo_loader):
data = data.to(self.dev)
mass = data.size(0)
if self.hc == 1:
p = nn.functional.softmax(self.model(data), 1)
self.PS[_selected, :] = p.detach().cpu().numpy().astype(self.dtype)
else:
p = self.model(data)
self.PS_pre[_selected, :] = p.detach().cpu().numpy().astype(self.dtype)
batch_time.update(time.time() - now)
now = time.time()
if batch_idx % 50 == 0:
print(f"Aggregating batch {batch_idx:03}/{l_dl}, speed: {mass / batch_time.avg:04.1f}Hz",
end='\r', flush=True)
self.model.headcount = self.hc
print("Aggregation of outputs takes {0:.2f} min".format((time.time() - now) / 60.), flush=True)
# 2. label refurbishment via sinkhorn-knopp:
if self.hc == 1:
optimize_L_sk(self, nh=0)
else:
for nh in range(self.hc):
print("computing head %s " % nh, end="\r", flush=True)
tl = getattr(self.model, "top_layer%d" % nh)
time_mat = time.time()
# clear memory
try:
del self.PS
except:
pass
# apply last FC layer (a matmul and adding of bias)
self.PS = (self.PS_pre @ tl.weight.cpu().numpy().T.astype(self.dtype)
+ tl.bias.cpu().numpy().astype(self.dtype))
print(f"matmul took {(time.time() - time_mat)/60:.2f}min", flush=True)
self.PS = py_softmax(self.PS, 1)
optimize_L_sk(self, nh=nh)
return
def gpu_sk(self):
""" Sinkhorn Knopp optimization on GPU
"""
# 1. aggregate inputs:
start_t = time.time()
if self.hc == 1:
self.PS, indices = aggreg_multi_gpu(self.model, self.pseudo_loader,
hc=self.hc, dim=self.outs[0], TYPE=self.dtype)
else:
try:
del self.PS_pre
except:
pass
torch.cuda.empty_cache()
time.sleep(1)
self.PS_pre, indices = aggreg_multi_gpu(self.model, self.pseudo_loader,
hc=self.hc, dim=self.presize, TYPE=torch.float32)
self.model.headcount = self.hc
print("Aggregation of outputs takes {0:.2f} min".format((time.time() - start_t) / 60.), flush=True)
# 2. label refurbishment via sinkhorn-knopp:
if self.hc == 1:
optimize_L_sk_multi(self, nh=0)
self.L[0,indices] = self.L[0,:]
else:
for nh in range(self.hc):
tl = getattr(self.model, "top_layer%d" % nh)
time_mat = time.time()
try:
del self.PS
torch.cuda.empty_cache()
except:
pass
self.PS = gpu_mul_AB(self.PS_pre, tl.weight.t(),
c=tl.bias, dim=self.outs[nh], TYPE=self.dtype)
print("matmul took %smin" % ((time.time() - time_mat) / 60.), flush=True)
optimize_L_sk_multi(self, nh=nh)
self.L[nh][indices] = self.L[nh]
return
def optimize_L_sk(self, nh=0):
N = max(self.L.size())
tt = time.time()
self.PS = self.PS.T # now it is K x N
r = np.ones((self.outs[nh], 1), dtype=self.dtype) / self.outs[nh]
c = np.ones((N, 1), dtype=self.dtype) / N
self.PS **= self.lamb # K x N
inv_K = self.dtype(1./self.outs[nh])
inv_N = self.dtype(1./N)
err = 1e6
_counter = 0
while err > 1e-1:
r = inv_K / (self.PS @ c) # (KxN)@(N,1) = K x 1
c_new = inv_N / (r.T @ self.PS).T # ((1,K)@(KxN)).t() = N x 1
if _counter % 10 == 0:
err = np.nansum(np.abs(c / c_new - 1))
c = c_new
_counter += 1
if _counter > 3e4:
break
print("error: ", err, 'step ', _counter, flush=True)
self.PS *= np.squeeze(c)
self.PS = self.PS.T
self.PS *= np.squeeze(r)
self.PS = self.PS.T
argmaxes = np.nanargmax(self.PS, 0) # size N
newL = torch.LongTensor(argmaxes)
self.L[nh] = newL.to(self.dev)
print('opt took {0:.2f}min, {1:4d}iters'.format(((time.time() - tt) / 60.), _counter), flush=True)
def optimize_L_sk_multi(self, nh=0):
""" label refurbishment via Sinkhorn-Knopp.
"""
N = max(self.L.size())
tt = time.time()
r = torch.ones((self.outs[nh], 1), device='cuda:0', dtype=self.dtype) / self.outs[nh]
c = torch.ones((N, 1), device='cuda:0', dtype=self.dtype) / N
ones = torch.ones(N, device='cuda:0', dtype=self.dtype)
inv_K = 1. / self.outs[nh]
inv_N = 1. / N
# inplace power of softmax activations:
[qq.pow_(self.lamb) for qq in self.PS] # K x N
err = 1e6
_counter = 0
ngpu = torch.cuda.device_count()
splits = np.cumsum([0] + [a.size(0) for a in self.PS])
while err > 1e-1:
r = inv_K / (gpu_mul_xA(c.t(), self.PS,
ngpu=ngpu, splits=splits, TYPE=self.dtype)).t() # ((1xN)@(NxK)).T = Kx1
c_new = inv_N / (gpu_mul_Ax(self.PS, r,
ngpu=ngpu, splits=splits, TYPE=self.dtype)) # (NxK)@(K,1) = N x 1
torch.cuda.synchronize()
if _counter % 10 == 0:
err = torch.sum(torch.abs((c.squeeze() / c_new.squeeze()) - ones)).cpu().item()
c = c_new
_counter += 1
if _counter > 3e4:
break
print("error: ", err, 'step ', _counter, flush=True)
# getting the final tranportation matrix #####################
for i, qq in enumerate(self.PS):
torch.mul(qq, c[splits[i]:splits[i + 1], :].to('cuda:' + str(i + 1)), out=qq)
[torch.mul(r.to('cuda:' + str(i + 1)).t(), qq, out=qq) for i, qq in enumerate(self.PS)]
argmaxes = torch.empty(N, dtype=torch.int64, device='cuda:0')
start_idx = 0
for i, qq in enumerate(self.PS):
amax = torch.argmax(qq, 1)
argmaxes[start_idx:start_idx + len(qq)].copy_(amax)
start_idx += len(qq)
newL = argmaxes
print('opt took {0:.2f}min, {1:4d}iters'.format(((time.time() - tt) / 60.), _counter), flush=True)
self.L[nh] = newL