-
Notifications
You must be signed in to change notification settings - Fork 2
/
train_resnet.py
238 lines (224 loc) · 13.5 KB
/
train_resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import argparse,logging,os
import mxnet as mx
from symbol.symbol_resnet import resnet
logger = logging.getLogger()
logger.setLevel(logging.INFO)
def multi_factor_scheduler(begin_epoch, epoch_size, step=[60, 75, 90], factor=0.9):
step_ = [epoch_size * (x-begin_epoch) for x in step if x-begin_epoch > 0]
return mx.lr_scheduler.MultiFactorScheduler(step=step_, factor=factor) if len(step_) else None
def main():
if args.data_type == "cifar10":
args.aug_level = 1
args.num_classes = 10
# depth should be one of 110, 164, 1001,...,which is should fit (args.depth-2)%9 == 0
if((args.depth-2)%9 == 0 and args.depth >= 164):
per_unit = [(args.depth-2)/9]
filter_list = [16, 64, 128, 256]
bottle_neck = True
elif((args.depth-2)%6 == 0 and args.depth < 164):
per_unit = [(args.depth-2)/6]
filter_list = [16, 16, 32, 64]
bottle_neck = False
else:
raise ValueError("no experiments done on detph {}, you can do it youself".format(args.depth))
units = per_unit*3
## add non local resnet
if args.non_local:
symbol = nonlocal_resnet(units=units, num_stage=3, filter_list=filter_list, num_class=args.num_classes,
data_type="cifar10", bottle_neck = bottle_neck, bn_mom=args.bn_mom, workspace=args.workspace,
memonger=args.memonger)
else:
symbol = resnet(units=units, num_stage=3, filter_list=filter_list, num_class=args.num_classes,
data_type="cifar10", bottle_neck = bottle_neck, bn_mom=args.bn_mom, workspace=args.workspace,
memonger=args.memonger)
elif args.data_type == "cifar100":
args.aug_level = 1
args.num_classes = 100
# depth should be one of 110, 164, 1001,...,which is should fit (args.depth-2)%9 == 0
if((args.depth-2)%9 == 0 and args.depth >= 164):
per_unit = [(args.depth-2)/9]
filter_list = [16, 64, 128, 256]
bottle_neck = True
elif((args.depth-2)%6 == 0 and args.depth < 164):
per_unit = [(args.depth-2)/6]
filter_list = [16, 16, 32, 64]
bottle_neck = False
else:
raise ValueError("no experiments done on detph {}, you can do it youself".format(args.depth))
units = per_unit*3
## add non local resnet
if args.non_local:
symbol = nonlocal_resnet(units=units, num_stage=3, filter_list=filter_list, num_class=args.num_classes,
data_type="cifar100", resample=args.resample, bottle_neck = bottle_neck,
bn_mom=args.bn_mom, workspace=args.workspace, memonger=args.memonger)
else:
symbol = resnet(units=units, num_stage=3, filter_list=filter_list, num_class=args.num_classes,
data_type="cifar100", bottle_neck = bottle_neck, bn_mom=args.bn_mom, workspace=args.workspace,
memonger=args.memonger)
elif args.data_type == "tiny-imagenet":
args.num_classes = 12
if args.depth == 18:
units = [2, 2, 2, 2]
elif args.depth == 34:
units = [3, 4, 6, 3]
elif args.depth == 50:
units = [3, 4, 6, 3]
elif args.depth == 101:
units = [3, 4, 23, 3]
elif args.depth == 152:
units = [3, 8, 36, 3]
elif args.depth == 200:
units = [3, 24, 36, 3]
elif args.depth == 269:
units = [3, 30, 48, 8]
else:
raise ValueError("no experiments done on detph {}, you can do it youself".format(args.depth))
symbol = resnet(units=units, num_stage=4, filter_list=[64, 256, 512, 1024, 2048] if args.depth >=50
else [64, 64, 128, 256, 512], num_class=args.num_classes, data_type="imagenet", bottle_neck = True
if args.depth >= 50 else False, bn_mom=args.bn_mom, workspace=args.workspace,
memonger=args.memonger)
elif args.data_type == "imagenet":
args.num_classes = 1000
if args.depth == 18:
units = [2, 2, 2, 2]
elif args.depth == 34:
units = [3, 4, 6, 3]
elif args.depth == 50:
units = [3, 4, 6, 3]
elif args.depth == 101:
units = [3, 4, 23, 3]
elif args.depth == 152:
units = [3, 8, 36, 3]
elif args.depth == 200:
units = [3, 24, 36, 3]
elif args.depth == 269:
units = [3, 30, 48, 8]
else:
raise ValueError("no experiments done on detph {}, you can do it youself".format(args.depth))
symbol = resnet(units=units, num_stage=4, filter_list=[64, 256, 512, 1024, 2048] if args.depth >=50
else [64, 64, 128, 256, 512], num_class=args.num_classes, data_type="imagenet", bottle_neck = True
if args.depth >= 50 else False, bn_mom=args.bn_mom, workspace=args.workspace,
memonger=args.memonger)
else:
raise ValueError("do not support {} yet".format(args.data_type))
kv = mx.kvstore.create(args.kv_store)
devs = mx.cpu() if args.gpus is None else [mx.gpu(int(i)) for i in args.gpus.split(',')]
epoch_size = max(int(args.num_examples / args.batch_size / kv.num_workers), 1)
begin_epoch = args.model_load_epoch if args.model_load_epoch else 0
if not os.path.exists("./model"):
os.mkdir("./model")
model_prefix = "model/resnet-{}-{}-{}".format(args.data_type, args.depth, kv.rank)
checkpoint = mx.callback.do_checkpoint(model_prefix)
arg_params = None
aux_params = None
if args.retrain:
_, arg_params, aux_params = mx.model.load_checkpoint(model_prefix, args.model_load_epoch)
if args.memonger:
import memonger
symbol = memonger.search_plan(symbol, data=(args.batch_size, 3, 32, 32) if args.data_type=="cifar10"
else (args.batch_size, 3, 224, 224))
train = mx.io.ImageRecordIter(
path_imgrec = os.path.join(args.data_dir, "cifar10_train.rec") if args.data_type == 'cifar10' else
os.path.join(args.data_dir, "cifar100_train.rec") if args.data_type == 'cifar100' else
os.path.join(args.data_dir, "tiny-imagenet-10_train.rec") if args.data_type == 'tiny-imagenet' else
os.path.join(args.data_dir, "train_256_q90.rec") if args.aug_level == 1
else os.path.join(args.data_dir, "train_480_q90.rec"),
label_width = 1,
data_name = 'data',
label_name = 'softmax_label',
data_shape = (3, 32, 32) if args.data_type=="cifar10" or args.data_type=="cifar100" else (3, 224, 224),
batch_size = args.batch_size,
pad = 4 if args.data_type == "cifar10" or args.data_type == "cifar100" else 0,
fill_value = 127, # only used when pad is valid
rand_crop = True,
max_random_scale = 1.0, # 480 with imagnet, 32 with cifar10
min_random_scale = 1.0 if args.data_type == "cifar10" or args.data_type == "cifar100"
else 1.0 if args.aug_level == 1 else 0.533, # 256.0/480.0
max_aspect_ratio = 0 if args.data_type == "cifar10" or args.data_type == "cifar100"
else 0 if args.aug_level == 1 else 0.25,
random_h = 0 if args.data_type == "cifar10" or args.data_type == "cifar100"
else 0 if args.aug_level == 1 else 36, # 0.4*90
random_s = 0 if args.data_type == "cifar10" or args.data_type == "cifar100"
else 0 if args.aug_level == 1 else 50, # 0.4*127
random_l = 0 if args.data_type == "cifar10" or args.data_type == "cifar100"
else 0 if args.aug_level == 1 else 50, # 0.4*127
max_rotate_angle = 0 if args.aug_level <= 2 else 10,
max_shear_ratio = 0 if args.aug_level <= 2 else 0.1,
rand_mirror = True,
shuffle = True,
num_parts = kv.num_workers,
part_index = kv.rank)
val = mx.io.ImageRecordIter(
path_imgrec = os.path.join(args.data_dir, "cifar10_val.rec") if args.data_type == 'cifar10' else
os.path.join(args.data_dir, "cifar100_val.rec") if args.data_type == 'cifar100' else
os.path.join(args.data_dir, "tiny-imagenet-10_val.rec") if args.data_type == 'tiny-imagenet' else
os.path.join(args.data_dir, "val_256_q90.rec"),
label_width = 1,
data_name = 'data',
label_name = 'softmax_label',
batch_size = args.batch_size,
data_shape = (3, 32, 32) if args.data_type=="cifar10" or args.data_type == "cifar100" else (3, 224, 224),
rand_crop = False,
rand_mirror = False,
num_parts = kv.num_workers,
part_index = kv.rank)
model = mx.model.FeedForward(
ctx = devs,
symbol = symbol,
arg_params = arg_params,
aux_params = aux_params,
num_epoch = 200 if args.data_type == "cifar10" or args.data_type == "cifar100" else 120,
begin_epoch = begin_epoch,
learning_rate = args.lr,
momentum = args.mom,
wd = args.wd,
#optimizer = 'nag',
optimizer = 'sgd',
initializer = mx.init.Xavier(rnd_type='gaussian', factor_type="in", magnitude=2),
lr_scheduler = multi_factor_scheduler(begin_epoch, epoch_size, step=[120, 160], factor=0.1)
if args.data_type=='cifar10' or args.data_type=='cifar100' else
multi_factor_scheduler(begin_epoch, epoch_size, step=[30, 60, 90], factor=0.1),
)
model.fit(
X = train,
eval_data = val,
eval_metric = ['acc', 'ce'] if args.data_type=='cifar10' or args.data_type == "cifar100" else
['acc', mx.metric.create('top_k_accuracy', top_k = 5)],
kvstore = kv,
batch_end_callback = mx.callback.Speedometer(args.batch_size, args.frequent),
epoch_end_callback = checkpoint)
logging.info("top-1 and top-5 acc is {}".format(model.score(X = val,
eval_metric = ['acc', mx.metric.create('top_k_accuracy', top_k = 5)])))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="command for training resnet-v2")
parser.add_argument('--gpus', type=str, default='0', help='the gpus will be used, e.g "0,1,2,3"')
parser.add_argument('--data-dir', type=str, default='./data/imagenet/', help='the input data directory')
parser.add_argument('--data-type', type=str, default='imagenet', help='the dataset type')
parser.add_argument('--list-dir', type=str, default='./',
help='the directory which contain the training list file')
parser.add_argument('--lr', type=float, default=0.1, help='initialization learning reate')
parser.add_argument('--mom', type=float, default=0.9, help='momentum for sgd')
parser.add_argument('--bn-mom', type=float, default=0.9, help='momentum for batch normlization')
parser.add_argument('--wd', type=float, default=0.0001, help='weight decay for sgd')
parser.add_argument('--batch-size', type=int, default=256, help='the batch size')
parser.add_argument('--workspace', type=int, default=512, help='memory space size(MB) used in convolution, if xpu '
' memory is oom, then you can try smaller vale, such as --workspace 256')
parser.add_argument('--depth', type=int, default=50, help='the depth of resnet')
parser.add_argument('--num-classes', type=int, default=1000, help='the class number of your task')
parser.add_argument('--aug-level', type=int, default=2, choices=[1, 2, 3],
help='level 1: use only random crop and random mirror\n'
'level 2: add scale/aspect/hsv augmentation based on level 1\n'
'level 3: add rotation/shear augmentation based on level 2')
parser.add_argument('--num-examples', type=int, default=1281167, help='the number of training examples')
parser.add_argument('--kv-store', type=str, default='device', help='the kvstore type')
parser.add_argument('--model-load-epoch', type=int, default=0,
help='load the model on an epoch using the model-load-prefix')
parser.add_argument('--frequent', type=int, default=50, help='frequency of logging')
parser.add_argument('--memonger', action='store_true', default=False,
help='true means using memonger to save momory, https://github.com/dmlc/mxnet-memonger')
parser.add_argument('--retrain', action='store_true', default=False, help='true means continue training')
parser.add_argument('--non_local', action='store_true', default=False, help='true means add non local nets')
parser.add_argument('--resample', action='store_true', default=False, help='true means add resample layer')
args = parser.parse_args()
logging.info(args)
main()