-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathrXA.html
746 lines (606 loc) · 25.2 KB
/
rXA.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">source</span>(<span class="st">'runDir.R'</span>)</code></pre></div>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">runDir</span>(<span class="st">'../CodeExamples/x0A_Working_with_R_and_other_tools'</span>,
<span class="st">'../SQLExample'</span>)</code></pre></div>
<pre><code>[1] "############################### start 226 Fri Jun 17 10:29:12 2016"
[1] "##### running ../CodeExamples/x0A_Working_with_R_and_other_tools/00226_informalexample_A.1_of_section_A.1.5.R"
[1] "##### in directory ../SQLExample"
> # informalexample A.1 of section A.1.5
> # (informalexample A.1 of section A.1.5) : Working with R and other tools : Installing the tools : R resources
>
> install.packages('ctv',repos='https://cran.r-project.org')
The downloaded binary packages are in
/var/folders/7q/h_jp2vj131g5799gfnpzhdp80000gn/T//RtmpiXUnN0/downloaded_packages
> library('ctv')
> # install.views('TimeSeries') # can take a LONG time
>
[1] "############################### end 226 Fri Jun 17 10:29:21 2016"
[1] "############################### start 227 Fri Jun 17 10:29:21 2016"
[1] "##### running ../CodeExamples/x0A_Working_with_R_and_other_tools/00227_example_A.1_of_section_A.2.R"
[1] "##### in directory ../SQLExample"
> # example A.1 of section A.2
> # (example A.1 of section A.2) : Working with R and other tools : Starting with R
> # Title: Trying a few R commands
>
> 1
[1] 1
> ## [1] 1
> 1/2
[1] 0.5
> ## [1] 0.5
> 'Joe'
[1] "Joe"
> ## [1] "Joe"
> "Joe"
[1] "Joe"
> ## [1] "Joe"
> "Joe"=='Joe'
[1] TRUE
> ## [1] TRUE
> c()
NULL
> ## NULL
> is.null(c())
[1] TRUE
> ## [1] TRUE
> is.null(5)
[1] FALSE
> ## [1] FALSE
> c(1)
[1] 1
> ## [1] 1
> c(1,2)
[1] 1 2
> ## [1] 1 2
> c("Apple",'Orange')
[1] "Apple" "Orange"
> ## [1] "Apple" "Orange"
> length(c(1,2))
[1] 2
> ## [1] 2
> vec <- c(1,2)
> vec
[1] 1 2
> ## [1] 1 2
>
[1] "############################### end 227 Fri Jun 17 10:29:21 2016"
[1] "############################### start 228 Fri Jun 17 10:29:21 2016"
[1] "##### running ../CodeExamples/x0A_Working_with_R_and_other_tools/00228_informalexample_A.2_of_section_A.2.1.R"
[1] "##### in directory ../SQLExample"
> # informalexample A.2 of section A.2.1
> # (informalexample A.2 of section A.2.1) : Working with R and other tools : Starting with R : Primary features of R
>
> x <- 2
> x < - 3
[1] FALSE
> ## [1] FALSE
> print(x)
[1] 2
> ## [1] 2
>
[1] "############################### end 228 Fri Jun 17 10:29:21 2016"
[1] "############################### start 229 Fri Jun 17 10:29:21 2016"
[1] "##### running ../CodeExamples/x0A_Working_with_R_and_other_tools/00229_example_A.2_of_section_A.2.1.R"
[1] "##### in directory ../SQLExample"
> # example A.2 of section A.2.1
> # (example A.2 of section A.2.1) : Working with R and other tools : Starting with R : Primary features of R
> # Title: Binding values to function arguments
>
> divide <- function(numerator,denominator) { numerator/denominator }
> divide(1,2)
[1] 0.5
> ## [1] 0.5
> divide(2,1)
[1] 2
> ## [1] 2
> divide(denominator=2,numerator=1)
[1] 0.5
> ## [1] 0.5
> divide(denominator<-2,numerator<-1) # yields 2, a wrong answer
[1] 2
> ## [1] 2
>
[1] "############################### end 229 Fri Jun 17 10:29:21 2016"
[1] "############################### start 230 Fri Jun 17 10:29:21 2016"
[1] "##### running ../CodeExamples/x0A_Working_with_R_and_other_tools/00230_example_A.3_of_section_A.2.1.R"
[1] "##### in directory ../SQLExample"
> # example A.3 of section A.2.1
> # (example A.3 of section A.2.1) : Working with R and other tools : Starting with R : Primary features of R
> # Title: Demonstrating side effects
>
> x<-1
> good <- function() { x <- 5}
> good()
> print(x)
[1] 1
> ## [1] 1
> bad <- function() { x <<- 5}
> bad()
> print(x)
[1] 5
> ## [1] 5
>
[1] "############################### end 230 Fri Jun 17 10:29:21 2016"
[1] "############################### start 231 Fri Jun 17 10:29:21 2016"
[1] "##### running ../CodeExamples/x0A_Working_with_R_and_other_tools/00231_example_A.4_of_section_A.2.1.R"
[1] "##### in directory ../SQLExample"
> # example A.4 of section A.2.1
> # (example A.4 of section A.2.1) : Working with R and other tools : Starting with R : Primary features of R
> # Title: R truth tables for Boolean operators
>
> c(T,T,F,F) == c(T,F,T,F)
[1] TRUE FALSE FALSE TRUE
> ## [1] TRUE FALSE FALSE TRUE
> c(T,T,F,F) & c(T,F,T,F)
[1] TRUE FALSE FALSE FALSE
> ## [1] TRUE FALSE FALSE FALSE
> c(T,T,F,F) | c(T,F,T,F)
[1] TRUE TRUE TRUE FALSE
> ## [1] TRUE TRUE TRUE FALSE
>
[1] "############################### end 231 Fri Jun 17 10:29:21 2016"
[1] "############################### start 232 Fri Jun 17 10:29:21 2016"
[1] "##### running ../CodeExamples/x0A_Working_with_R_and_other_tools/00232_informalexample_A.3_of_section_A.2.1.R"
[1] "##### in directory ../SQLExample"
> # informalexample A.3 of section A.2.1
> # (informalexample A.3 of section A.2.1) : Working with R and other tools : Starting with R : Primary features of R
>
> add <- function(a,b) { a + b}
> add(1,2)
[1] 3
> ## [1] 3
>
[1] "############################### end 232 Fri Jun 17 10:29:21 2016"
[1] "############################### start 233 Fri Jun 17 10:29:21 2016"
[1] "##### running /Users/johnmount/Documents/work/PracticalDataScienceWithR/zmPDSwR/RunExamples/replacements/00233_informalexample_A.4_of_section_A.2.1.R"
[1] "##### in directory ../SQLExample"
> # informalexample A.4 of section A.2.1
> # (informalexample A.4 of section A.2.1) : Working with R and other tools : Starting with R : Primary features of R
>
> # In knitr/Markdown we need to catch the error.
>
> tryCatch(add(1,'fred'),
error=function(x) print(x))
<simpleError in a + b: non-numeric argument to binary operator>
> ## Error in a + b : non-numeric argument to binary operator
>
[1] "############################### end 233 Fri Jun 17 10:29:21 2016"
[1] "############################### start 234 Fri Jun 17 10:29:21 2016"
[1] "##### running ../CodeExamples/x0A_Working_with_R_and_other_tools/00234_example_A.5_of_section_A.2.1.R"
[1] "##### in directory ../SQLExample"
> # example A.5 of section A.2.1
> # (example A.5 of section A.2.1) : Working with R and other tools : Starting with R : Primary features of R
> # Title: Call-by-value effect
>
> vec <- c(1,2)
> fun <- function(v) { v[[2]]<-5; print(v)}
> fun(vec)
[1] 1 5
> ## [1] 1 5
> print(vec)
[1] 1 2
> ## [1] 1 2
>
[1] "############################### end 234 Fri Jun 17 10:29:21 2016"
[1] "############################### start 235 Fri Jun 17 10:29:21 2016"
[1] "##### running ../CodeExamples/x0A_Working_with_R_and_other_tools/00235_informalexample_A.5_of_section_A.2.2.R"
[1] "##### in directory ../SQLExample"
> # informalexample A.5 of section A.2.2
> # (informalexample A.5 of section A.2.2) : Working with R and other tools : Starting with R : Primary R data types
>
> vec <- c(2,3)
> vec[[2]] <- 5
> print(vec)
[1] 2 5
> ## [1] 2 5
>
[1] "############################### end 235 Fri Jun 17 10:29:21 2016"
[1] "############################### start 236 Fri Jun 17 10:29:21 2016"
[1] "##### running ../CodeExamples/x0A_Working_with_R_and_other_tools/00236_example_A.6_of_section_A.2.2.R"
[1] "##### in directory ../SQLExample"
> # example A.6 of section A.2.2
> # (example A.6 of section A.2.2) : Working with R and other tools : Starting with R : Primary R data types
> # Title: Examples of R indexing operators
>
> x <- list('a'=6,b='fred')
> names(x)
[1] "a" "b"
> ## [1] "a" "b"
> x$a
[1] 6
> ## [1] 6
> x$b
[1] "fred"
> ## [1] "fred"
> x[['a']]
[1] 6
> ## $a
> ## [1] 6
>
> x[c('a','a','b','b')]
$a
[1] 6
$a
[1] 6
$b
[1] "fred"
$b
[1] "fred"
> ## $a
> ## [1] 6
> ##
> ## $a
> ## [1] 6
> ##
> ## $b
> ## [1] "fred"
> ##
> ## $b
> ## [1] "fred"
>
[1] "############################### end 236 Fri Jun 17 10:29:21 2016"
[1] "############################### start 237 Fri Jun 17 10:29:21 2016"
[1] "##### running ../CodeExamples/x0A_Working_with_R_and_other_tools/00237_example_A.7_of_section_A.2.2.R"
[1] "##### in directory ../SQLExample"
> # example A.7 of section A.2.2
> # (example A.7 of section A.2.2) : Working with R and other tools : Starting with R : Primary R data types
> # Title: R’s treatment of unexpected factor levels
>
> factor('red',levels=c('red','orange'))
[1] red
Levels: red orange
> ## [1] red
> ## Levels: red orange
> factor('apple',levels=c('red','orange'))
[1] <NA>
Levels: red orange
> ## [1] <NA>
> ## Levels: red orange
>
[1] "############################### end 237 Fri Jun 17 10:29:21 2016"
[1] "############################### start 238 Fri Jun 17 10:29:21 2016"
[1] "##### running ../CodeExamples/x0A_Working_with_R_and_other_tools/00238_example_A.8_of_section_A.2.2.R"
[1] "##### in directory ../SQLExample"
> # example A.8 of section A.2.2
> # (example A.8 of section A.2.2) : Working with R and other tools : Starting with R : Primary R data types
> # Title: Confirm lm() encodes new strings correctly.
>
> d <- data.frame(x=factor(c('a','b','c')),
y=c(1,2,3))
> m <- lm(y~0+x,data=d) # Note: 1
> print(predict(m,
newdata=data.frame(x='b'))[[1]]) # Note: 2
[1] 2
> # [1] 2
> print(predict(m,
newdata=data.frame(x=factor('b',levels=c('b'))))[[1]]) # Note: 3
[1] 2
> # [1] 2
>
> # Note 1:
> # Build a data frame and linear model mapping
> # a,b,c to 1,2,3.
>
> # Note 2:
> # Show that model gets correct prediction for
> # b as a string.
>
> # Note 3:
> # Show that model gets correct prediction for
> # b as a factor, encoded with a different number of
> # levels. This shows that lm() is correctly treating
> # factors as strings.
>
[1] "############################### end 238 Fri Jun 17 10:29:21 2016"
[1] "############################### start 239 Fri Jun 17 10:29:21 2016"
[1] "##### running ../CodeExamples/x0A_Working_with_R_and_other_tools/00239_example_A.9_of_section_A.2.3.R"
[1] "##### in directory ../SQLExample"
> # example A.9 of section A.2.3
> # (example A.9 of section A.2.3) : Working with R and other tools : Starting with R : Loading data from HTTPS sources
> # Title: Loading UCI car data directly from GitHub using HTTPS
>
> require(RCurl) # Note: 1
Loading required package: RCurl
Loading required package: bitops
> urlBase <-
'https://raw.githubusercontent.com/WinVector/zmPDSwR/master/' # Note: 2
> mkCon <- function(nm) { # Note: 3
textConnection(getURL(paste(urlBase,nm,sep='/')))
}
> cars <- read.table(mkCon('car.data.csv'), # Note: 4
sep=',',header=T,comment.char='')
> # Note 1:
> # Bring in the RCurl library for more connection
> # methods.
>
> # Note 2:
> # Form a valid HTTPS base URL for raw access to
> # the GitHub repository.
>
> # Note 3:
> # Define a function that wraps a URL path
> # fragment into a usable HTTPS connection.
>
> # Note 4:
> # Load the car data from GitHub over
> # HTTPS.
>
[1] "############################### end 239 Fri Jun 17 10:29:22 2016"
[1] "############################### start 240 Fri Jun 17 10:29:22 2016"
[1] "##### running ../CodeExamples/x0A_Working_with_R_and_other_tools/00240_example_A.10_of_section_A.3.2.R"
[1] "##### in directory ../SQLExample"
> # example A.10 of section A.3.2
> # (example A.10 of section A.3.2) : Working with R and other tools : Using databases with R : Starting with SQuirreL SQL
> # Title: Reading database data into R
>
> install.packages('RJDBC',repos='https://cran.r-project.org') # Note: 1
The downloaded binary packages are in
/var/folders/7q/h_jp2vj131g5799gfnpzhdp80000gn/T//RtmpiXUnN0/downloaded_packages
> library('RJDBC') # Note: 2
Loading required package: DBI
Loading required package: rJava
Attaching package: 'rJava'
The following object is masked from 'package:RCurl':
clone
> drv <- JDBC("org.h2.Driver","h2-1.3.170.jar",identifier.quote="'") # Note: 3
> conn <- dbConnect(drv,"jdbc:h2:h2demodb_h2","u","u") # Note: 4
> d <- dbGetQuery(conn,"SELECT * FROM example_table") # Note: 5
> print(d) # Note: 6
STATIDID NAME
1 1 Joe
2 2 Fred
> ## STATUSID NAME
> ## 1 1 Joe
> ## 2 2 Fred # Note: 7
>
> # Note 1:
> # Install the RJDBC package from the CRAN
> # package repository.
>
> # Note 2:
> # Load the RJDBC library.
>
> # Note 3:
> # Use the RJDBC library to build a database
> # driver.
>
> # Note 4:
> # Use the database driver to build a database
> # connection. In our SQuirreL SQL example, we used
> # the path /Users/johnmount/Downloads/h2demodb_h2.
> # So the path fragment given here (h2demodb_h2)
> # works only if R is working in the directory
> # /Users/johnmount/Downloads. You would alter all of
> # these paths and URLs to work for your own
> # directories.
>
> # Note 5:
> # Run a SQL select query using the database
> # connection to populate a data frame.
>
> # Note 6:
> # Print the result data frame.
>
> # Note 7:
> # The database table as an R data frame.
>
[1] "############################### end 240 Fri Jun 17 10:29:26 2016"
[1] "############################### start 241 Fri Jun 17 10:29:26 2016"
[1] "##### running ../CodeExamples/x0A_Working_with_R_and_other_tools/00241_example_A.11_of_section_A.3.4.R"
[1] "##### in directory ../SQLExample"
> # example A.11 of section A.3.4
> # (example A.11 of section A.3.4) : Working with R and other tools : Using databases with R : An example SQL data transformation task
> # Title: Loading an Excel spreadsheet
>
> library(gdata)
gdata: read.xls support for 'XLS' (Excel 97-2004) files ENABLED.
gdata: read.xls support for 'XLSX' (Excel 2007+) files ENABLED.
Attaching package: 'gdata'
The following object is masked from 'package:stats':
nobs
The following object is masked from 'package:utils':
object.size
The following object is masked from 'package:base':
startsWith
> bookings <- read.xls('Workbook1.xlsx',sheet=1,pattern='date',
stringsAsFactors=F,as.is=T)
> prices <- read.xls('Workbook1.xlsx',sheet=2,pattern='date',
stringsAsFactors=F,as.is=T)
[1] "############################### end 241 Fri Jun 17 10:29:27 2016"
[1] "############################### start 242 Fri Jun 17 10:29:27 2016"
[1] "##### running ../CodeExamples/x0A_Working_with_R_and_other_tools/00242_example_A.12_of_section_A.3.4.R"
[1] "##### in directory ../SQLExample"
> # example A.12 of section A.3.4
> # (example A.12 of section A.3.4) : Working with R and other tools : Using databases with R : An example SQL data transformation task
> # Title: The hotel reservation and price data
>
> print(bookings)
date day.of.stay X1.before X2.before X3.before
1 2013-07-01 105 98 95 96
2 2013-07-02 103 100 98 95
3 2013-07-03 105 95 90 80
4 2013-07-04 105 105 107 98
> ## date day.of.stay X1.before X2.before X3.before
> ## 1 2013-07-01 105 98 95 96
> ## 2 2013-07-02 103 100 98 95
> ## 3 2013-07-03 105 95 90 80
> ## 4 2013-07-04 105 105 107 98
> print(prices)
date day.of.stay X1.before X2.before X3.before
1 2013-07-01 $250.00 $200.00 $280.00 $300.00
2 2013-07-02 $200.00 $250.00 $290.00 $250.00
3 2013-07-03 $200.00 $200.00 $250.00 $275.00
4 2013-07-04 $250.00 $300.00 $300.00 $200.00
> ## date day.of.stay X1.before X2.before X3.before
> ## 1 2013-07-01 $250.00 $200.00 $280.00 $300.00
> ## 2 2013-07-02 $200.00 $250.00 $290.00 $250.00
> ## 3 2013-07-03 $200.00 $200.00 $250.00 $275.00
> ## 4 2013-07-04 $250.00 $300.00 $300.00 $200.00
>
[1] "############################### end 242 Fri Jun 17 10:29:27 2016"
[1] "############################### start 243 Fri Jun 17 10:29:27 2016"
[1] "##### running ../CodeExamples/x0A_Working_with_R_and_other_tools/00243_example_A.13_of_section_A.3.4.R"
[1] "##### in directory ../SQLExample"
> # example A.13 of section A.3.4
> # (example A.13 of section A.3.4) : Working with R and other tools : Using databases with R : An example SQL data transformation task
> # Title: Using melt to restructure data
>
> library('reshape2')
> bthin <- melt(bookings,id.vars=c('date'),
variable.name='daysBefore',value.name='bookings') # Note: 1
> pthin <- melt(prices,id.vars=c('date'),
variable.name='daysBefore',value.name='price') # Note: 2
> daysCodes <- c('day.of.stay', 'X1.before', 'X2.before', 'X3.before')
> bthin$nDaysBefore <- match(bthin$daysBefore,daysCodes)-1 # Note: 3
> pthin$nDaysBefore <- match(pthin$daysBefore,daysCodes)-1 # Note: 4
> pthin$price <- as.numeric(gsub('\\$','',pthin$price)) # Note: 5
> print(head(pthin))
date daysBefore price nDaysBefore
1 2013-07-01 day.of.stay 250 0
2 2013-07-02 day.of.stay 200 0
3 2013-07-03 day.of.stay 200 0
4 2013-07-04 day.of.stay 250 0
5 2013-07-01 X1.before 200 1
6 2013-07-02 X1.before 250 1
> ## date daysBefore price nDaysBefore
> ## 1 2013-07-01 day.of.stay 250 0
> ## 2 2013-07-02 day.of.stay 200 0
> ## 3 2013-07-03 day.of.stay 200 0
> ## 4 2013-07-04 day.of.stay 250 0
> ## 5 2013-07-01 X1.before 200 1
> ## 6 2013-07-02 X1.before 250 1
>
> # Note 1:
> # Use melt to change columns that are not date
> # (day.of.stay, Xn.before) to values stored in a new
> # column called daysBefore. Each booking count
> # becomes a new row (instead of having many
> # different bookings in the same row).
>
> # Note 2:
> # Each price entry becomes a new row (instead
> # of having many different prices in the same
> # row).
>
> # Note 3:
> # Use match and dayCodes list to convert key
> # strings to numeric nDaysBefore in our bookings
> # data.
>
> # Note 4:
> # Use match and dayCodes list to convert key
> # strings to numeric nDaysBefore in our price
> # data.
>
> # Note 5:
> # Remove dollar sign and convert prices to
> # numeric type.
>
[1] "############################### end 243 Fri Jun 17 10:29:27 2016"
[1] "############################### start 244 Fri Jun 17 10:29:27 2016"
[1] "##### running /Users/johnmount/Documents/work/PracticalDataScienceWithR/zmPDSwR/RunExamples/replacements/00244_example_A.14_of_section_A.3.4.R"
[1] "##### in directory ../SQLExample"
> # example A.14 of section A.3.4
> # (example A.14 of section A.3.4) : Working with R and other tools : Using databases with R : An example SQL data transformation task
> # Title: Assembling many rows using SQL
>
> # Book annotation hooks inside the SQL cause problems.
>
> options(gsubfn.engine = "R")
> library('sqldf')
Loading required package: gsubfn
Loading required package: proto
Loading required package: RSQLite
> joined <- sqldf('
select
bCurrent.date as StayDate,
bCurrent.daysBefore as daysBefore,
bCurrent.nDaysBefore as nDaysBefore,
p.price as price,
bCurrent.bookings as bookingsCurrent,
bPrevious.bookings as bookingsPrevious,
bCurrent.bookings - bPrevious.bookings as pickup
from
bthin bCurrent
join
bthin bPrevious
on
bCurrent.date=bPrevious.date
and bCurrent.nDaysBefore+1=bPrevious.nDaysBefore
join
pthin p
on
bCurrent.date=p.date
and bCurrent.nDaysBefore=p.nDaysBefore
')
> print(joined)
StayDate daysBefore nDaysBefore price bookingsCurrent
1 2013-07-01 day.of.stay 0 250 105
2 2013-07-02 day.of.stay 0 200 103
3 2013-07-03 day.of.stay 0 200 105
4 2013-07-04 day.of.stay 0 250 105
5 2013-07-01 X1.before 1 200 98
6 2013-07-02 X1.before 1 250 100
7 2013-07-03 X1.before 1 200 95
8 2013-07-04 X1.before 1 300 105
9 2013-07-01 X2.before 2 280 95
10 2013-07-02 X2.before 2 290 98
11 2013-07-03 X2.before 2 250 90
12 2013-07-04 X2.before 2 300 107
bookingsPrevious pickup
1 98 7
2 100 3
3 95 10
4 105 0
5 95 3
6 98 2
7 90 5
8 107 -2
9 96 -1
10 95 3
11 80 10
12 98 9
[1] "############################### end 244 Fri Jun 17 10:29:27 2016"
[1] "############################### start 245 Fri Jun 17 10:29:27 2016"
[1] "##### running ../CodeExamples/x0A_Working_with_R_and_other_tools/00245_example_A.15_of_section_A.3.4.R"
[1] "##### in directory ../SQLExample"
> # example A.15 of section A.3.4
> # (example A.15 of section A.3.4) : Working with R and other tools : Using databases with R : An example SQL data transformation task
> # Title: Showing our hotel model results
>
> library('ggplot2')
> ggplot(data=joined,aes(x=price,y=pickup)) +
geom_point() + geom_jitter() + geom_smooth(method='lm')</code></pre>
<div class="figure">
<img src="rXA_files/figure-markdown_github/xA1-1.png" alt="" />
</div>
<pre><code>> print(summary(lm(pickup~price,data=joined)))
Call:
lm(formula = pickup ~ price, data = joined)
Residuals:
Min 1Q Median 3Q Max
-4.614 -2.812 -1.213 3.387 6.386
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 11.00765 7.98736 1.378 0.198
price -0.02798 0.03190 -0.877 0.401
Residual standard error: 4.21 on 10 degrees of freedom
Multiple R-squared: 0.07144, Adjusted R-squared: -0.02142
F-statistic: 0.7693 on 1 and 10 DF, p-value: 0.401
> #
> #Call:
> #lm(formula = pickup ~ price, data = joined)
> #
> #Residuals:
> # Min 1Q Median 3Q Max
> #-4.614 -2.812 -1.213 3.387 6.386
> #
> #Coefficients:
> # Estimate Std. Error t value Pr(>|t|)
> #(Intercept) 11.00765 7.98736 1.378 0.198
> #price -0.02798 0.03190 -0.877 0.401
> #
> #Residual standard error: 4.21 on 10 degrees of freedom
> #Multiple R-squared: 0.07144, Adjusted R-squared: -0.02142
> #F-statistic: 0.7693 on 1 and 10 DF, p-value: 0.401
>
[1] "############################### end 245 Fri Jun 17 10:29:27 2016"</code></pre>