-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpostprocess_pretrained_ckpt.py
237 lines (204 loc) · 9.11 KB
/
postprocess_pretrained_ckpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# Copyright (c) 2020 NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import collections
import json
import os
import shutil
import numpy as np
import tensorflow as tf
from configuration_deberta_v2 import DebertaV2Config, DebertaV3PretrainingConfig
from configuration_roberta import RobertaConfig, RobertaPretrainingConfig
from modeling_tf_deberta_v2 import PretrainingModel as DebertaPretrainingModel
from modeling_tf_deberta_v2 import get_generator_config as deberta_get_generator_config
from modeling_tf_roberta import PretrainingModel as RobertaPretrainingModel
from modeling_tf_roberta import get_generator_config as roberta_get_generator_config
from utils import heading, log, log_config, print_model_layers
# doesn't work because nvidia logger causes segfault :) so i just copy the tokenizer XD
# from fast_tokenizer.tokenization_deberta_v2_fast import DebertaV2TokenizerFast
def from_pretrained_ckpt(args):
loaded_config = json.load(open(args.config_file))
# Set up model
model_type = loaded_config["model_type"]
if model_type == "deberta-v2":
config = DebertaV3PretrainingConfig(**loaded_config)
log("Using Deberta V2 model")
elif model_type == "roberta":
config = RobertaPretrainingConfig(**loaded_config)
log("Using Roberta model")
else:
raise ValueError("Unknown model type: {}".format(model_type))
heading("Config:")
log_config(config)
if config.amp:
policy = tf.keras.mixed_precision.experimental.Policy(
"mixed_float16", loss_scale="dynamic"
)
tf.keras.mixed_precision.experimental.set_policy(policy)
print("Compute dtype: %s" % policy.compute_dtype) # Compute dtype: float16
print("Variable dtype: %s" % policy.variable_dtype) # Variable dtype: float32
# Set up model
if model_type == "deberta-v2":
model = DebertaPretrainingModel(config)
elif model_type == "roberta":
model = RobertaPretrainingModel(config)
else:
raise ValueError("Unknown model type: {}".format(model_type))
print_model_layers(model)
# Load checkpoint
checkpoint = tf.train.Checkpoint(
step=tf.Variable(0),
phase2=tf.Variable(True),
model=model,
)
manager = tf.train.CheckpointManager(
checkpoint, config.checkpoints_dir, max_to_keep=config.keep_checkpoint_max
)
# pretrained_ckpt_path = (
# args.pretrained_checkpoint
# if args.pretrained_checkpoint and manager.latest_checkpoint is not None
# else manager.latest_checkpoint
# )
pretrained_ckpt_path = args.pretrained_checkpoint
if pretrained_ckpt_path is None:
raise ValueError("No checkpoint found at {}".format(config.checkpoints_dir))
checkpoint.restore(pretrained_ckpt_path).expect_partial()
log(
" ** Restored from {} at step {}".format(
pretrained_ckpt_path, int(checkpoint.step)
)
)
output_dir = (
args.output_dir
if args.output_dir
else os.path.join(config.checkpoints_dir, "postprocessed")
)
log(" ** Output dir: {}".format(output_dir))
if config.electra_objective:
log(" ** Model was trained using ELECTRA objective")
disc_dir = os.path.join(output_dir, "discriminator")
gen_dir = os.path.join(output_dir, "generator")
else:
log(" ** Model was trained using MLM objective")
gen_dir = output_dir
if "bf16" in config.hidden_act:
config.hidden_act = config.hidden_act.replace("_bf16", "")
if "pooler_hidden_act" in config.__dict__ and "bf16" in config.pooler_hidden_act:
config.pooler_hidden_act = config.pooler_hidden_act.replace("_bf16", "")
if "conv_act" in config.__dict__ and "bf16" in config.conv_act:
config.conv_act = config.conv_act.replace("_bf16", "")
heading(" ** Saving generator")
model.generator(model.generator.dummy_inputs)
model.generator.update_embeddings()
model.generator.save_pretrained(gen_dir)
heading(" ** Saving Tokenizer")
tokenizer_path = os.path.join(config.vocab_file)
log(f"Tokenizer files are from {tokenizer_path}")
for files in os.listdir(tokenizer_path):
log(f"Copying {files}")
shutil.copy(os.path.join(tokenizer_path, files), gen_dir)
if model_type == "deberta-v2":
disc_config = DebertaV2Config(
model_name=config.model_name,
vocab_size=config.vocab_size,
hidden_size=config.hidden_size,
embedding_size=config.embedding_size,
num_hidden_layers=config.num_hidden_layers,
num_attention_heads=config.num_attention_heads,
intermediate_size=4 * config.hidden_size,
hidden_act=config.hidden_act,
hidden_dropout_prob=config.hidden_dropout_prob,
attention_probs_dropout_prob=config.attention_probs_dropout_prob,
max_position_embeddings=config.max_position_embeddings,
type_vocab_size=config.type_vocab_size,
relative_attention=config.relative_attention,
position_buckets=config.position_buckets,
position_biased_input=config.position_biased_input,
conv_kernel_size=config.conv_kernel_size,
pad_token_id=config.pad_token_id,
bos_token_id=config.bos_token_id,
eos_token_id=config.eos_token_id,
)
if config.electra_objective:
gen_config = deberta_get_generator_config(config, disc_config)
else:
gen_config = disc_config
else:
disc_config = RobertaConfig(
model_name=config.model_name,
vocab_size=config.vocab_size,
hidden_size=config.hidden_size,
embedding_size=config.embedding_size,
num_hidden_layers=config.num_hidden_layers,
num_attention_heads=config.num_attention_heads,
intermediate_size=4 * config.hidden_size,
hidden_act=config.hidden_act,
hidden_dropout_prob=config.hidden_dropout_prob,
attention_probs_dropout_prob=config.attention_probs_dropout_prob,
max_position_embeddings=config.max_position_embeddings,
type_vocab_size=config.type_vocab_size,
position_biased_input=config.position_biased_input,
pad_token_id=config.pad_token_id,
bos_token_id=config.bos_token_id,
eos_token_id=config.eos_token_id,
)
if config.electra_objective:
gen_config = roberta_get_generator_config(config, disc_config)
else:
gen_config = disc_config
log(" ** Saving generator")
# print generator
log(json.dumps(gen_config.to_dict(), indent=4))
gen_config.to_json_file(os.path.join(gen_dir, "config.json"))
if config.electra_objective:
heading(" ** Saving discriminator")
if model_type == "deberta-v2" and "debertav2" in model.discriminator.__dict__:
discriminator = model.discriminator.debertav2
discriminator(discriminator.dummy_inputs)
if config.shared_embeddings:
assert np.all(
discriminator.get_input_embeddings().weight
== model.generator.get_input_embeddings().weight
)
discriminator.update_embeddings()
print_model_layers(discriminator)
discriminator.save_pretrained(disc_dir)
else:
model.discriminator(model.discriminator.dummy_inputs)
if config.shared_embeddings:
assert np.all(
model.discriminator.get_input_embeddings().weight
== model.generator.get_input_embeddings().weight
)
model.discriminator.update_embeddings()
print_model_layers(model.discriminator)
model.discriminator.save_pretrained(disc_dir)
heading(" ** Saving Tokenizer")
tokenizer_path = os.path.join(config.vocab_file)
log(f"Tokenizer files are from {tokenizer_path}")
for files in os.listdir(tokenizer_path):
log(f"Copying {files}")
shutil.copy(os.path.join(tokenizer_path, files), disc_dir)
log(" ** Saving discriminator config")
# print discriminator
log(json.dumps(disc_config.to_dict(), indent=4))
disc_config.to_json_file(os.path.join(disc_dir, "config.json"))
if __name__ == "__main__":
# Parse essential args
parser = argparse.ArgumentParser()
parser.add_argument("--config_file", required=True, type=str)
parser.add_argument("--pretrained_checkpoint")
parser.add_argument("--output_dir")
args = parser.parse_args()
from_pretrained_ckpt(args)