-
Notifications
You must be signed in to change notification settings - Fork 2
/
tar2017.py
251 lines (214 loc) · 8.27 KB
/
tar2017.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# coding=utf-8
# Copyright 2023 Wojciech Kusa
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import List, Tuple, Dict
import datasets
import pandas as pd
from csmed.loader.bigbiohub import BigBioConfig
from csmed.loader.bigbiohub import Tasks
from csmed.loader.bigbiohub import text_features
from csmed.utils import (
is_prepared,
save_checksum,
mark_all_files_prepared,
get_from_pubmed,
)
_LANGUAGES = ["English"]
_PUBMED = True
_LOCAL = False
_CITATION = """\
@article{Kanoulas2017CLEFOverview,
author = {Kanoulas, Evangelos and Li, Dan and Azzopardi, Leif and Spijker, Rene},
issn = {1613-0073},
journal = {CEUR Workshop Proceedings},
keywords = {Active learning, Evaluation, Information retrieval, Systematic reviews, TAR, Text classification},
month = {9},
pages = {1--29},
title = {{CLEF 2017 technologically assisted reviews in empirical medicine overview}},
url = {https://pureportal.strath.ac.uk/en/publications/clef-2017-technologically-assisted-reviews-in-empirical-medicine-},
volume = {1866},
year = {2017},
bdsk-url-1 = {https://pureportal.strath.ac.uk/en/publications/clef-2017-technologically-assisted-reviews-in-empirical-medicine-}}
"""
_DATASETNAME = "tar2017"
_DISPLAYNAME = "tar2017"
_DESCRIPTION = """\
Technologically Assisted Reviews in Empirical Medicine 2017
"""
_HOMEPAGE = "https://github.com/CLEF-TAR/tar"
_LICENSE = "MIT license"
_URLS = {
"tar": "https://github.com/WojciechKusa/tar/archive/refs/heads/master.zip",
}
_SUPPORTED_TASKS = [Tasks.TEXT_CLASSIFICATION]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
_CLASS_NAMES = ["included", "excluded"]
def prepare_dataset(
input_folder: str,
output_folder: str,
) -> None:
if is_prepared(output_folder):
return
qrels_df = pd.read_csv(
f"{input_folder}/tar-master/2017-TAR/all/all.qrels",
sep="\t",
header=None,
names=["review_id", "0", "PMID", "Label"],
)
print("PubMed data is being downloaded. This may take a while for the first time.")
for review_id in qrels_df["review_id"].unique():
review_df = qrels_df[qrels_df["review_id"] == review_id]
print(f"{review_id=}, {len(review_df)=}")
review_df = get_from_pubmed(review_df)
review_df.to_csv(f"{output_folder}/{review_id}.csv", index=False)
print(f"Prepared review size: {len(review_df)}")
save_checksum(
file=f"{output_folder}/{review_id}.csv", dataset_directory=output_folder
)
mark_all_files_prepared(output_folder)
class Tar2017Dataset(datasets.GeneratorBasedBuilder):
"""Technologically Assisted Reviews in Empirical Medicine 2017."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = []
dataset_versions = ["all"]
for dataset_version in dataset_versions:
BUILDER_CONFIGS.append(
BigBioConfig(
name=f"tar2017_{dataset_version}_source",
version=SOURCE_VERSION,
description=f"tar2017 {dataset_version} source schema",
schema="source",
subset_id=f"tar2017_{dataset_version}",
)
)
BUILDER_CONFIGS.append(
BigBioConfig(
name=f"tar2017_{dataset_version}_bigbio_text",
version=BIGBIO_VERSION,
description=f"tar2017 {dataset_version} BigBio schema",
schema="bigbio_text",
subset_id=f"tar2017_{dataset_version}",
)
)
DEFAULT_CONFIG_NAME = "tar2017_all_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"review_name": datasets.Value("string"),
"pmid": datasets.Value("string"),
"title": datasets.Value("string"),
"abstract": datasets.Value("string"),
"label": datasets.ClassLabel(names=_CLASS_NAMES),
}
)
elif self.config.schema == "bigbio_text":
features = text_features
else:
raise ValueError(f"Unsupported schema {self.config.schema}")
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
data_dir = dl_manager.download_and_extract(_URLS["tar"])
pubmed_output_dir = "/".join(self.cache_dir.split("/")[:-3])
prepare_dataset(input_folder=data_dir, output_folder=pubmed_output_dir)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# Whatever you put in gen_kwargs will be passed to _generate_examples
gen_kwargs={
"qrels_path": os.path.join(
data_dir, "tar-master/2017-TAR/training/qrels/qrel_abs_train"
),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"qrels_path": os.path.join(
data_dir, "tar-master/2017-TAR/testing/qrels/qrel_abs_test.txt"
),
"split": "test",
},
),
]
def _generate_examples(self, qrels_path, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
data_dir = "/".join(self.cache_dir.split("/")[:-3])
review = "_".join(self.config.subset_id.split("_")[1:])
qrels_df = pd.read_csv(
qrels_path,
sep="\s+",
header=None,
names=["review_id", "0", "PMID", "Label"],
)
REVIEWS = qrels_df["review_id"].unique().tolist()
uid = 0
if review == "all":
df = pd.DataFrame()
for r in REVIEWS:
review_df = pd.read_csv(os.path.join(data_dir, f"{r}.csv"))
review_df["Review"] = r
# remove old Label column
review_df = review_df.drop(columns=["Label"])
# add Label from qrels_df to review_df based on PMID and review_id
review_df = review_df.merge(
qrels_df,
left_on=["PMID", "Review"],
right_on=["PMID", "review_id"],
how="left",
)
df = pd.concat([df, review_df])
else:
df = pd.read_csv(os.path.join(data_dir, f"{review}.csv"))
df["Review"] = review
for key, example in df.iterrows():
review_name = example["Review"]
title = example["Title"]
abstract = example["Abstract"]
label = example["Label"]
pmid = str(example["PMID"])
uid += 1
text = f"{title}\n\n{abstract}"
if self.config.schema == "source":
data = {
"review_name": review_name,
"pmid": pmid,
"title": title,
"abstract": abstract,
"label": label,
}
yield str(uid), data
elif self.config.schema == "bigbio_text":
data = {
"id": str(uid),
"document_id": pmid,
"text": text,
"labels": [label],
}
yield str(uid), data
if __name__ == "__main__":
x = datasets.load_dataset(__file__, name="tar2017_all_source")
print(type(x))
print(x)