Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Leetcode 2484. Count Palindromic Subsequences #154

Open
Woodyiiiiiii opened this issue Nov 27, 2022 · 0 comments
Open

Leetcode 2484. Count Palindromic Subsequences #154

Woodyiiiiiii opened this issue Nov 27, 2022 · 0 comments

Comments

@Woodyiiiiiii
Copy link
Owner

Woodyiiiiiii commented Nov 27, 2022

这道题我一点思路都没有...

tips:

  1. 数组长度为10^4,而O(n^2)时间复杂度勉强够。
  2. 注意取模的时候,如果超过一次运算(比如res+=(a*b)),最好先用long存着,再mod

正解:分解5为'2+1+1',O(n)时间复杂度
'2+1+2' DP:

class Solution {
    public int countPalindromes(String s) {
        int len = s.length();
        // split 5 to 2 + 1 + 2
        int[][] left = new int[len][100];
        int[][] right = new int[len][100];
        final int mod = 1000000007;

        // left[i][j] means the number of j(0~99) at index i
        int[] numberCnt = new int[10];
        for (int i = 0; i < len; ++i) {
            int num = s.charAt(i) - '0';
            for (int j = 0; j < 10; ++j) {
                left[i][j * 10 + num] = numberCnt[j];
            }
            // accumulate
            if (i != 0) {
                for (int k = 0; k < 100; ++k) {
                    left[i][k] += left[i - 1][k];
                }
            }
            numberCnt[num]++;
        }

        // right[i][j] means the number of j(0~99) at index i
        numberCnt = new int[10];
        for (int i = len - 1; i >= 0; --i) {
            int num = s.charAt(i) - '0';
            for (int j = 0; j < 10; ++j) {
                right[i][j * 10 + num] = numberCnt[j];
            }
            if (i != len - 1) {
                for (int k = 0; k < 100; ++k) {
                    right[i][k] += right[i + 1][k];
                }
            }
            numberCnt[num]++;
        }

        // middle number(0~9)
        long ans = 0;
        for (int i = 2; i < len - 2; ++i) {
            for (int k = 0; k < 100; ++k) {
                // number is left * middle * right
                ans += ((long) left[i - 1][k] * right[i + 1][k]);
                ans %= mod;
            }
        }

        return (int) ans;
    }
}

'3+2' DP:

class Solution {
    public int countPalindromes(String s) {
        char[] map = s.toCharArray();

        int MOD = 1000000007;

        int[][] dp = new int[2][s.length()];   // dp[i][j] 表示 [i,j] 这个里面的3回文数量。 dp[i][j] = dp[i][j-1] + (s[i] == s[j] ? j - i - 1 : 0)

        int res = 0;
        for (int i = s.length() - 1; i >= 0; i--) {
            int tempI = i % 2;
            int beforeI = (tempI + 1) % 2;
            for (int j = i + 2; j < s.length(); j++) {
                dp[tempI][j] = (dp[tempI][j - 1] + dp[beforeI][j] - dp[beforeI][j - 1] + MOD) % MOD + (map[i] == map[j] ? j - i - 1 : 0);
                dp[tempI][j] %= MOD;
                if (map[i] == map[j] && j - i >= 4) {
                    res += dp[beforeI][j - 1];
                    res %= MOD;
                }
            }
        }

        return res;

    }
}

一个月后,我重新做了这道题,按照2+1+2DP的做法:

class Solution {
    public int countPalindromes(String s) {
        final int MOD = (int) (1e9 + 7);
        long ans = 0;
        int n = s.length();
        if (n < 5) {
            return 0;
        }

        // init
        long[][] prefixUnits = new long[n][10];
        long[][] suffixUnits = new long[n][10];
        for (int i = 1; i < n; i++) {
            System.arraycopy(prefixUnits[i - 1], 0, prefixUnits[i], 0, 10);
            prefixUnits[i][s.charAt(i - 1) - '0']++;
        }
        for (int i = n - 2; i >= 0; i--) {
            System.arraycopy(suffixUnits[i + 1], 0, suffixUnits[i], 0, 10);
            suffixUnits[i][s.charAt(i + 1) - '0']++;
        }

        // calculate dp
        long[][] prefixDp = new long[n][100];
        long[][] suffixDp = new long[n][100];
        int firstNum = (s.charAt(0) - '0') * 10 + (s.charAt(1) - '0');
        int lastNum = (s.charAt(n - 1) - '0') * 10 + (s.charAt(n - 2) - '0');
        prefixDp[2][firstNum] = 1;
        suffixDp[n - 3][lastNum] = 1;
        for (int i = 2; i < n - 2; ++i) {
            for (int j = 0; j < 100; ++j) {
                prefixDp[i][j] += prefixDp[i - 1][j];
            }
            int cur = s.charAt(i) - '0';
            for (int j = 0; j < 10; ++j) {
                if (prefixUnits[i][j] == 0) {
                    continue;
                }
                int num = j * 10 + cur;
                prefixDp[i + 1][num] += prefixUnits[i][j];
            }
        }
        for (int i = n - 3; i >= 2; --i) {
            for (int j = 0; j < 100; ++j) {
                suffixDp[i][j] += suffixDp[i + 1][j];
            }
            int cur = s.charAt(i) - '0';
            for (int j = 0; j < 10; ++j) {
                if (suffixUnits[i][j] == 0) {
                    continue;
                }
                int num = j * 10 + cur;
                suffixDp[i - 1][num] += suffixUnits[i][j];
            }
        }

        for (int i = 2; i < n - 2; ++i) {
            for (int j = 0; j < 100; ++j) {
                if (prefixDp[i][j] == 0 || suffixDp[i][j] == 0) {
                    continue;
                }
                ans += prefixDp[i][j] * suffixDp[i][j];
                ans %= MOD;
            }
        }
        return (int) ans;
    }
}

这种奇数次回旋字符串数目类型的题目都可以按照类似的解法——分回旋字符串为两种类型,然后分成两截进行DP计算。类似题目有:


Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant