We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
2708. Maximum Strength of a Group O(2^N) 状压DP
这道题,我一看到数据范围,就觉得不需要记忆化搜索,直接暴力递归即可。不过,这道题想记忆化搜索都不需要。其实,这样子时间复杂度是2^n,因为类似一个二叉树结构,选或者不选。
接着,看到是乘法, 且存在负数,top-down返回的最大值与当前值不一定能组成最大值,所以top-down也要返回最小值,以防负数的出现。同时也要跟当前值做比较进行取舍。
class Solution { int n; int[] nums; public long maxStrength(int[] nums) { n = nums.length; this.nums = nums; long[] ans = dfs(0); return ans[1]; } private long[] dfs(int i) { if (i >= n) { return new long[]{1, 1}; } long[] next = dfs(i + 1); long max = Math.max(Math.max(i == n - 1 ? -10 : next[1], i == n - 1 ? -10 : next[0]), Math.max(nums[i] * next[0], nums[i] * next[1])); max = Math.max(max, nums[i]); long min = Math.min(Math.min(i == n - 1 ? 10 : next[1], i == n - 1 ? 10 : next[0]), Math.min(nums[i] * next[0], nums[i] * next[1])); min = Math.min(min, nums[i]); return new long[]{min, max}; } }
那么其实还有O(nlgn)甚至O(n)的解法——贪心。正值肯定都取,负数要取最小的偶数个,0的话看情况取。注意corn case。
class Solution { public long maxStrength(int[] nums) { if (Arrays.stream(nums).allMatch(num -> num == 0)) { return 0; } long ans = 1; int negativeCount = 0, positiveCount = 0; for (int num : nums) { if (num > 0) { ans *= num; positiveCount ++; } else if (num < 0) { negativeCount ++; } } Arrays.sort(nums); if (negativeCount % 2 == 0) { for (int num : nums) { if (num < 0) { ans *= num; } } } else { int cnt = negativeCount - 1; for (int num : nums) { if (cnt == 0) { break; } if (num < 0) { ans *= num; cnt--; } } } if (positiveCount == 0 && negativeCount == 1) { ans = nums.length == 1 ? nums[0] : 0; } return ans; } }
The text was updated successfully, but these errors were encountered:
No branches or pull requests
2708. Maximum Strength of a Group
2708. Maximum Strength of a Group
O(2^N) 状压DP
这道题,我一看到数据范围,就觉得不需要记忆化搜索,直接暴力递归即可。不过,这道题想记忆化搜索都不需要。其实,这样子时间复杂度是2^n,因为类似一个二叉树结构,选或者不选。
接着,看到是乘法, 且存在负数,top-down返回的最大值与当前值不一定能组成最大值,所以top-down也要返回最小值,以防负数的出现。同时也要跟当前值做比较进行取舍。
那么其实还有O(nlgn)甚至O(n)的解法——贪心。正值肯定都取,负数要取最小的偶数个,0的话看情况取。注意corn case。
The text was updated successfully, but these errors were encountered: