-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPowerLMM_Example.R
90 lines (63 loc) · 2.24 KB
/
PowerLMM_Example.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
#SevillaR talk
#The problem:
time <- c(2000:2015)
abundance <- rnorm(16, 150, 50) #poison??
plot(abundance ~ time, t = "l")
#can I detect a trend?
m <- lm(abundance ~ time)
summary(m)
abline(m, col = "red")
#but, can I detect a trend? Power analysis.
library(pwr)
pwr.r.test(n = 16, r = cor(time, abundance), sig.level = 0.05, power = NULL)
#how many more years would I need?
(sample_needed <- pwr.r.test(n = NULL, r = cor(time, abundance), sig.level = 0.05, power = 0.80))
sample_needed[1] < length(time)
#same for anovas (pwr.anova.test)
# simple, right? but data is complex
abundance2 <- jitter(abundance, 1000)
abundance3 <- jitter(abundance, 1000)
plot(abundance ~ time, t = "p")
points(abundance2 ~ time, col = "red")
points(abundance3 ~ time, col = "blue")
#build a data frame
data <- data.frame(time = rep(time, 3), abundance = c(abundance, abundance2, abundance3),
site = c(rep("uno", 16), rep("dos", 16), rep("tres", 16)))
head(data)
library(lme4)
m <- lmer(abundance ~ time + (1|site), data)
summary(m)
abline(fixef(m))
#so, what is my power? how many years? #do simulations!
library(devtools)
install_github("pitakakariki/simr")
library(simr)
#Specify the effect size
fixef(m)
fixef(m)["time"]
fixef(m)["time"] <- -2 #a 10% change in 10 years, i.e. 20 individuos sobre 200 en 10 años
fixef(m)
abline(fixef(m), col = "red")
#Calculate power
powerSim(m) #slow pre-calculated
ps <- lastResult()
#Use extend to increase the sample size.
model2 <- extend(m, along = "time", n=30)
powerSim(model2)
#Power curve over range of sample sizes.
pc2 <- powerCurve(model2)
print(pc2)
plot(pc2)
#Increase the number or size of groups.
#Power curve with more groups.
model3 <- extend(m, along="site", n=5) #this is equivalent at saying more sites, equal number of years
pc3 <- powerCurve(model3, along="site")
print(pc3)
plot(pc3)
#Power curve with larger groups.
model4 <- extend(m, within="time+site", n=5) #this is like taking more than one value per site (same years and sites)
pc4 <- powerCurve(model4, within="time+site", nsim = 99)
print(pc4)
plot(pc4)
#If pilot data is not available, simr can be used to create lme4 objects from scratch as a starting point.
#https://github.com/pitakakariki/simr/blob/master/vignettes/fromscratch.Rmd