-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
66 lines (42 loc) · 1.69 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import logging
from pytz import timezone
from datetime import datetime
import numpy as np
from data_loader import RealDataset
from models import VAE
from trainers import Trainer
from helpers.config_utils import save_yaml_config, get_args
from helpers.log_helper import LogHelper
from helpers.torch_utils import set_seed, get_device
from helpers.dir_utils import create_dir
from helpers.analyze_utils import sample_vae, plot_samples, plot_reconstructions
def main():
# Get arguments parsed
args = get_args()
# Setup for logging
output_dir = 'output/{}'.format(datetime.now(timezone('Asia/Shanghai')).strftime('%Y-%m-%d_%H-%M-%S-%f')[:-3])
create_dir(output_dir)
LogHelper.setup(log_path='{}/training.log'.format(output_dir),
level_str='INFO')
_logger = logging.getLogger(__name__)
# Save the configuration for logging purpose
save_yaml_config(args, path='{}/config.yaml'.format(output_dir))
# Reproducibility
set_seed(args.seed)
# Get dataset
dataset = RealDataset(args.batch_size)
_logger.info('Finished generating dataset')
device = get_device()
model = VAE(args.z_dim,args.num_hidden,args.input_dim,device)
trainer = Trainer(args.batch_size, args.num_epochs, args.learning_rate)
trainer.train_model(model=model, dataset = dataset, output_dir=output_dir, device = device, input_dim = args.input_dim)
_logger.info('Finished training model')
# Visualizations
samples = sample_vae(model,args.z_dim, device)
plot_samples(samples)
plot_reconstructions(model,dataset,device)
_logger.info('All Finished!')
if __name__ == '__main__':
main()