-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrainer.py
337 lines (284 loc) · 14.8 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
from networks.generator import Generator
from networks.SNPatchDiscriminator import SNPatchDiscriminator
from utils import get_scheduler, weights_init, save_network, save_latest_network, get_model_list
import torch
import torch.nn as nn
import torch.nn.functional as F
import loss
import os
class SPMPGAN_Trainer(nn.Module):
def __init__(self, cfg):
super().__init__()
# setting basic params
self.cfg = cfg
if self.cfg['is_train']:
self.model_names = ['netG', 'netD_1', 'netD_2', 'netD_3']
else: # during test time, only load G
self.model_names = ['G']
# Initiate the submodules and initialization params
self.netG = Generator(self.cfg)
self.netD_1 = SNPatchDiscriminator(self.cfg, num_layer=4)
self.netD_2 = SNPatchDiscriminator(self.cfg, num_layer=5)
self.netD_3 = SNPatchDiscriminator(self.cfg, num_layer=6)
self.netG.apply(weights_init('gaussian'))
self.netD_1.apply(weights_init('gaussian'))
self.netD_2.apply(weights_init('gaussian'))
self.netD_3.apply(weights_init('gaussian'))
self.FloatTensor = torch.cuda.FloatTensor if torch.cuda.is_available() \
else torch.FloatTensor
self.ByteTensor = torch.cuda.ByteTensor if torch.cuda.is_available() \
else torch.ByteTensor
# Setup the optimizers and schedulers
if cfg['is_train']:
lr = self.cfg['lr']
beta1 = self.cfg['beta1']
beta2 = self.cfg['beta2']
# set optimizers
self.optimizers = []
G_params = list(self.netG.parameters())
D_1_params = list(self.netD_1.parameters())
D_2_params = list(self.netD_2.parameters())
D_3_params = list(self.netD_3.parameters())
self.optimizer_G = torch.optim.Adam(G_params, lr=lr, betas=(beta1, beta2))
self.optimizer_D_1 = torch.optim.Adam(D_1_params, lr=lr*4, betas=(beta1, beta2))
self.optimizer_D_2 = torch.optim.Adam(D_2_params, lr=lr*4, betas=(beta1, beta2))
self.optimizer_D_3 = torch.optim.Adam(D_3_params, lr=lr*4, betas=(beta1, beta2))
self.optimizers.append(self.optimizer_G)
self.optimizers.append(self.optimizer_D_1)
self.optimizers.append(self.optimizer_D_2)
self.optimizers.append(self.optimizer_D_3)
self.opt_names = ['optimizer_G', 'optimizer_D_1', 'optimizer_D_2', 'optimizer_D_3']
# set schedulers
# self.schedulers = [get_scheduler(optimizer, self.cfg) for optimizer in self.optimizers]
# set criterion
self.criterionGAN = loss.GANLoss(cfg['gan_mode']).cuda()
self.criterionL1 = torch.nn.L1Loss()
self.criterionVGG = loss.VGGLoss()
self.criterionFeat = torch.nn.L1Loss()
self.G_losses = {}
self.D_losses = {}
######################################################################################
def set_input(self, input):
# scatter_ require .long() type
input['lab'] = input['lab'].long()
self.masked_img = input['masked_img'].cuda() # mask image
self.gt = input['img'].cuda() # real image
# self.img_know = input['img_know'].cuda()
self.mask = input['mask'].cuda() # mask image
self.lab = input['lab'].cuda() # label image
self.name = input['name']
# create one-hot label map
lab_map = self.lab
bs, _, h, w = lab_map.size()
nc = self.cfg['lab_dim']
input_label = self.FloatTensor(bs, nc, h, w).zero_()
self.segmap = input_label.scatter_(1, lab_map, 1.0)
# print(' segmap ',self.lab.shape)
self.segmap = self.segmap * self.mask
self.inst_map = input['inst_map'].cuda()
self.edge_map = self.get_edges(self.inst_map)
self.edge_map = self.edge_map * self.mask
self.segmap_edge = torch.cat((self.segmap, self.edge_map), dim=1)
self.segmap_G1 = F.interpolate(self.segmap, size=(64, 64), mode='nearest')
self.segmap_G2 = F.interpolate(self.segmap, size=(128, 128), mode='nearest')
self.segmap_G3 = self.segmap
def get_edges(self, t):
edge = torch.cuda.ByteTensor(t.size()).zero_()
edge[:,:,:,1:] = edge[:,:,:,1:] | (t[:,:,:,1:] != t[:,:,:,:-1])
edge[:,:,:,:-1] = edge[:,:,:,:-1] | (t[:,:,:,1:] != t[:,:,:,:-1])
edge[:,:,1:,:] = edge[:,:,1:,:] | (t[:,:,1:,:] != t[:,:,:-1,:])
edge[:,:,:-1,:] = edge[:,:,:-1,:] | (t[:,:,1:,:] != t[:,:,:-1,:])
return edge.float()
def forward(self):
gt_list, input_list, mask_fake_list, fake_list = self.netG(self.gt, self.masked_img, self.segmap_edge, self.mask)
self.gt_G1, self.gt_G2, self.gt_G3 = gt_list
self.input_G1, self.input_G2, self.input_G3 = input_list
self.mask_fake_G1, self.mask_fake_G2, self.mask_fake_G3 = mask_fake_list
self.fake_G1, self.fake_G2, self.fake_G3 = fake_list
def test(self, gt, masked_img, segmap, mask):
with torch.no_grad():
_, _, mask_fake_list, _ = self.netG(gt, masked_img, segmap, mask)
_, _, mask_fake_G3 = mask_fake_list
return mask_fake_G3
def compute_D_loss(self):
"""Calculate GAN loss for the discriminator"""
# Fake
fake = torch.cat([self.segmap_G1, self.mask_fake_G1.detach()], dim=1)
pred_fake = self.netD_1(fake)
self.D_losses['loss_D_fake_G1'] = self.criterionGAN(pred_fake, False, for_discriminator=True) * self.cfg['lambda_gan']
# Real
real = torch.cat([self.segmap_G1, self.gt_G1], dim=1)
pred_real = self.netD_1(real)
self.D_losses['loss_D_real_G1'] = self.criterionGAN(pred_real, True, for_discriminator=True) * self.cfg['lambda_gan']
# Fake
fake = torch.cat([self.segmap_G2, self.mask_fake_G2.detach()], dim=1)
pred_fake = self.netD_2(fake)
self.D_losses['loss_D_fake_G2'] = self.criterionGAN(pred_fake, False, for_discriminator=True) * self.cfg['lambda_gan']
# Real
real = torch.cat([self.segmap_G2, self.gt_G2], dim=1)
pred_real = self.netD_2(real)
self.D_losses['loss_D_real_G2'] = self.criterionGAN(pred_real, True, for_discriminator=True) * self.cfg['lambda_gan']
# Fake
fake = torch.cat([self.segmap_G3, self.mask_fake_G3.detach()], dim=1)
pred_fake = self.netD_3(fake)
self.D_losses['loss_D_fake_G3'] = self.criterionGAN(pred_fake, False, for_discriminator=True) * self.cfg['lambda_gan']
# Real
real = torch.cat([self.segmap_G3, self.gt_G3], dim=1)
pred_real = self.netD_3(real)
self.D_losses['loss_D_real_G3'] = self.criterionGAN(pred_real, True, for_discriminator=True) * self.cfg['lambda_gan']
return self.D_losses
def compute_G_loss(self):
"""Calculate losses for the generator"""
# L1 loss
self.G_losses['L1_G1'] = torch.mean(torch.abs(self.fake_G1 - self.gt_G1)) * self.cfg['lambda_L1']
self.G_losses['L1_G2'] = torch.mean(torch.abs(self.fake_G2 - self.gt_G2)) * self.cfg['lambda_L1']
self.G_losses['L1_G3'] = torch.mean(torch.abs(self.fake_G3 - self.gt_G3)) * self.cfg['lambda_L1']
# GAN loss
fake_global = torch.cat([self.segmap_G1, self.mask_fake_G1], dim=1)
pred_fake_global = self.netD_1(fake_global)
self.G_losses['G_GAN_G1'] = self.criterionGAN(pred_fake_global, True, for_discriminator=False) * self.cfg['lambda_gan']
fake_global = torch.cat([self.segmap_G2, self.mask_fake_G2], dim=1)
pred_fake_global = self.netD_2(fake_global)
self.G_losses['G_GAN_G2'] = self.criterionGAN(pred_fake_global, True, for_discriminator=False) * self.cfg['lambda_gan']
fake_global = torch.cat([self.segmap_G3, self.mask_fake_G3], dim=1)
pred_fake_global = self.netD_3(fake_global)
self.G_losses['G_GAN_G3'] = self.criterionGAN(pred_fake_global, True, for_discriminator=False) * self.cfg['lambda_gan']
# VGG loss
if not self.cfg['no_vgg_loss']:
self.G_losses['VGG_G1'] = self.criterionVGG(self.fake_G1, self.gt_G1) * self.cfg['lambda_vgg']
self.G_losses['VGG_G2'] = self.criterionVGG(self.fake_G2, self.gt_G2) * self.cfg['lambda_vgg']
self.G_losses['VGG_G3'] = self.criterionVGG(self.fake_G3, self.gt_G3) * self.cfg['lambda_vgg']
return self.G_losses
def optimize_parameters(self):
self.forward()
# update global D
self.set_requires_grad(self.netD_1, True) # enable backprop for D
self.set_requires_grad(self.netD_2, True)
self.set_requires_grad(self.netD_3, True)
self.optimizer_D_1.zero_grad() # set D's gradients to zero
self.optimizer_D_2.zero_grad()
self.optimizer_D_3.zero_grad()
self.d_losses = self.compute_D_loss()
d_loss = sum(self.d_losses.values()).mean()
d_loss.backward()
self.optimizer_D_1.step()
self.optimizer_D_2.step()
self.optimizer_D_3.step()
# update G
self.set_requires_grad(self.netD_1, False) # D requires no gradients when optimizing G
self.set_requires_grad(self.netD_2, False)
self.set_requires_grad(self.netD_3, False)
self.optimizer_G.zero_grad() # set G's gradients to zero
self.g_losses = self.compute_G_loss()
g_loss = sum(self.g_losses.values()).mean()
g_loss.backward()
self.optimizer_G.step() # udpate G's weights
#########################################################################################################
########## util func #############
def set_requires_grad(self, nets, requires_grad=False):
"""Set requies_grad=Fasle for all the networks to avoid unnecessary computations
Parameters:
nets (network list) -- a list of networks
requires_grad (bool) -- whether the networks require gradients or not
"""
if not isinstance(nets, list):
nets = [nets]
for net in nets:
if net is not None:
for param in net.parameters():
param.requires_grad = requires_grad
def visual_results(self):
return {'masked_img': self.masked_img, 'gt': self.gt, 'lab': self.lab, 'mask': self.mask,
'gt_G1': self.gt_G1, 'gt_G2': self.gt_G2, 'gt_G3': self.gt_G3,
'input_G1': self.input_G1, 'input_G2': self.input_G2, 'input_G3': self.input_G3,
'mask_fake_G1': self.mask_fake_G1, 'mask_fake_G2': self.mask_fake_G2, 'mask_fake_G3': self.mask_fake_G3,
'fake_G1': self.fake_G1, 'fake_G2': self.fake_G2, 'fake_G3': self.fake_G3,
'edge_map': self.edge_map, }, self.name
def print_losses(self):
print('G Losses')
for v,k in self.G_losses.items():
print(v, ': ', k)
print('D Losses')
for v,k in self.D_losses.items():
print(v, ': ', k)
def print_network(self, model, name):
"""Print out the network information."""
num_params = 0
for p in model.parameters():
num_params += p.numel()
print(model)
print(name)
print("The number of parameters: {}".format(num_params))
def gradient_penalty(self, y, x):
"""Compute gradient penalty: (L2_norm(dy/dx) - 1)**2."""
weight = torch.ones(y.size()).to(self.device)
dydx = torch.autograd.grad(outputs=y,
inputs=x,
grad_outputs=weight,
retain_graph=True,
create_graph=True,
only_inputs=True)[0]
dydx = dydx.view(dydx.size(0), -1)
dydx_l2norm = torch.sqrt(torch.sum(dydx**2, dim=1))
return torch.mean((dydx_l2norm-1)**2)
def save_nets(self, epoch, cfg, suffix=''):
save_file = {}
save_file['epoch'] = epoch
for name in self.model_names:
net = getattr(self, name)
save_file[name] = net.cpu().state_dict()
if torch.cuda.is_available():
net.cuda()
for name in self.opt_names:
opt = getattr(self, name)
save_file[name] = opt.state_dict()
save_filename = '%03d_ckpt_%s.pth' % (epoch, suffix)
save_path = os.path.join(cfg['checkpoints_dir'], save_filename)
torch.save(save_file, save_path)
def save_latest_nets(self, epoch, cfg):
save_file = {}
save_file['epoch'] = epoch
for name in self.model_names:
net = getattr(self, name)
save_file[name] = net.cpu().state_dict()
if torch.cuda.is_available():
net.cuda()
for name in self.opt_names:
opt = getattr(self, name)
save_file[name] = opt.state_dict()
save_filename = 'latest_ckpt.pth'
save_path = os.path.join(cfg['checkpoints_dir'], save_filename)
torch.save(save_file, save_path)
def print_networks(self):
"""Print the total number of parameters in the network and network architecture"""
print('---------- Networks initialized -------------')
for name in self.model_names:
if isinstance(name, str):
net = getattr(self, name)
num_params = 0
for param in net.parameters():
num_params += param.numel()
# print network architecture
print(net)
print('[Network %s] Total number of parameters : %.3f M' % (name, num_params / 1e6))
print('-----------------------------------------------')
# update learning rate (called once every epoch)
def update_learning_rate(self):
for scheduler in self.schedulers:
scheduler.step()
lr = self.optimizers[0].param_groups[0]['lr']
print('learning rate = %.7f' % lr)
def resume(self, checkpoint_dir, ckpt_filename=None):
if not ckpt_filename:
ckpt_filename = 'latest_ckpt.pth'
ckpt = torch.load(os.path.join(checkpoint_dir, ckpt_filename))
cur_epoch = ckpt['epoch']
for name in self.model_names:
net = getattr(self, name)
net.load_state_dict(ckpt[name])
print('load model %s of epoch %d' % (name, cur_epoch))
for name in self.opt_names:
opt = getattr(self, name)
opt.load_state_dict(ckpt[name])
print('load opt %s of epoch %d' % (name, cur_epoch))
return cur_epoch