forked from ada-loss/ada-loss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
211 lines (174 loc) · 7.84 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import argparse
import copy
import numpy as np
import chainer
from chainer.datasets import ConcatenatedDataset
from chainer.datasets import TransformDataset
from chainer.optimizer_hooks import WeightDecay
from chainer import serializers
from chainer import training
from chainer.training import extensions
from chainer.training import triggers
from chainercv.datasets import voc_bbox_label_names
from chainercv.datasets import VOCBboxDataset
from chainercv.extensions import DetectionVOCEvaluator
from chainercv import transforms
from models.ssd import GradientScaling
from models.ssd import multibox_loss
from models.ssd import random_crop_with_bbox_constraints
from models.ssd import random_distort
from models.ssd import resize_with_random_interpolation
from models.ssd.ssd_vgg16 import SSD300, SSD512
# https://docs.chainer.org/en/stable/tips.html#my-training-process-gets-stuck-when-using-multiprocessiterator
import cv2
cv2.setNumThreads(0)
class MultiboxTrainChain(chainer.Chain):
def __init__(self, model, alpha=1, k=3):
super(MultiboxTrainChain, self).__init__()
with self.init_scope():
self.model = model
self.alpha = alpha
self.k = k
def forward(self, imgs, gt_mb_locs, gt_mb_labels):
mb_locs, mb_confs = self.model(imgs)
loc_loss, conf_loss = multibox_loss(mb_locs, mb_confs, gt_mb_locs,
gt_mb_labels, self.k)
loss = loc_loss * self.alpha + conf_loss
chainer.reporter.report(
{
'loss': loss,
'loss/loc': loc_loss,
'loss/conf': conf_loss
}, self)
return loss
class Transform(object):
def __init__(self, coder, size, mean, dtype=None):
# to send cpu, make a copy
self.coder = copy.copy(coder)
self.coder.to_cpu()
self.size = size
self.mean = mean
self.dtype = dtype
def __call__(self, in_data):
# There are five data augmentation steps
# 1. Color augmentation
# 2. Random expansion
# 3. Random cropping
# 4. Resizing with random interpolation
# 5. Random horizontal flipping
img, bbox, label = in_data
# 1. Color augmentation
img = random_distort(img)
# 2. Random expansion
if np.random.randint(2):
img, param = transforms.random_expand(img,
fill=self.mean,
return_param=True)
bbox = transforms.translate_bbox(bbox,
y_offset=param['y_offset'],
x_offset=param['x_offset'])
# 3. Random cropping
img, param = random_crop_with_bbox_constraints(img,
bbox,
return_param=True)
bbox, param = transforms.crop_bbox(bbox,
y_slice=param['y_slice'],
x_slice=param['x_slice'],
allow_outside_center=False,
return_param=True)
label = label[param['index']]
# 4. Resizing with random interpolatation
_, H, W = img.shape
img = resize_with_random_interpolation(img, (self.size, self.size))
bbox = transforms.resize_bbox(bbox, (H, W), (self.size, self.size))
# 5. Random horizontal flipping
img, params = transforms.random_flip(img,
x_random=True,
return_param=True)
bbox = transforms.flip_bbox(bbox, (self.size, self.size),
x_flip=params['x_flip'])
# Preparation for SSD network
img -= self.mean
mb_loc, mb_label = self.coder.encode(bbox, label)
dtype = chainer.get_dtype(self.dtype)
if img.dtype != dtype:
img = img.astype(dtype)
return img, mb_loc, mb_label
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--model',
choices=('ssd300', 'ssd512'),
default='ssd300')
parser.add_argument('--batchsize', type=int, default=32)
parser.add_argument('--iteration', type=int, default=120000)
parser.add_argument('--step', type=int, nargs='*', default=[80000, 100000])
parser.add_argument('--gpu', type=int, default=-1)
parser.add_argument('--out', default='result')
parser.add_argument('--resume')
args = parser.parse_args()
if args.model == 'ssd300':
model = SSD300(n_fg_class=len(voc_bbox_label_names),
pretrained_model='imagenet')
elif args.model == 'ssd512':
model = SSD512(n_fg_class=len(voc_bbox_label_names),
pretrained_model='imagenet')
model.use_preset('evaluate')
train_chain = MultiboxTrainChain(model)
if args.gpu >= 0:
chainer.cuda.get_device_from_id(args.gpu).use()
model.to_gpu()
train = TransformDataset(
ConcatenatedDataset(VOCBboxDataset(year='2007', split='trainval'),
VOCBboxDataset(year='2012', split='trainval')),
Transform(model.coder, model.insize, model.mean))
train_iter = chainer.iterators.MultiprocessIterator(train, args.batchsize)
test = VOCBboxDataset(year='2007',
split='test',
use_difficult=True,
return_difficult=True)
test_iter = chainer.iterators.SerialIterator(test,
args.batchsize,
repeat=False,
shuffle=False)
# initial lr is set to 1e-3 by ExponentialShift
optimizer = chainer.optimizers.MomentumSGD()
optimizer.setup(train_chain)
for param in train_chain.params():
if param.name == 'b':
param.update_rule.add_hook(GradientScaling(2))
else:
param.update_rule.add_hook(WeightDecay(0.0005))
updater = training.updaters.StandardUpdater(train_iter,
optimizer,
device=args.gpu)
trainer = training.Trainer(updater, (args.iteration, 'iteration'),
args.out)
trainer.extend(extensions.ExponentialShift('lr', 0.1, init=1e-3),
trigger=triggers.ManualScheduleTrigger(
args.step, 'iteration'))
trainer.extend(DetectionVOCEvaluator(test_iter,
model,
use_07_metric=True,
label_names=voc_bbox_label_names),
trigger=triggers.ManualScheduleTrigger(
args.step + [args.iteration], 'iteration'))
log_interval = 10, 'iteration'
trainer.extend(extensions.LogReport(trigger=log_interval))
trainer.extend(extensions.observe_lr(), trigger=log_interval)
trainer.extend(extensions.PrintReport([
'epoch', 'iteration', 'lr', 'main/loss', 'main/loss/loc',
'main/loss/conf', 'validation/main/map'
]),
trigger=log_interval)
trainer.extend(extensions.ProgressBar(update_interval=10))
trainer.extend(extensions.snapshot(),
trigger=triggers.ManualScheduleTrigger(
args.step + [args.iteration], 'iteration'))
trainer.extend(extensions.snapshot_object(
model, 'model_iter_{.updater.iteration}'),
trigger=(args.iteration, 'iteration'))
if args.resume:
serializers.load_npz(args.resume, trainer)
trainer.run()
if __name__ == '__main__':
main()