forked from jakc4103/DFQ
-
Notifications
You must be signed in to change notification settings - Fork 1
/
convert_ncnn.py
221 lines (180 loc) · 9.81 KB
/
convert_ncnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import torch
import torch.onnx
import argparse
import os
import sys
from torchvision import transforms, datasets
from PyTransformer.transformers.torchTransformer import TorchTransformer
from utils.relation import create_relation
from dfq import cross_layer_equalization, bias_absorption, bias_correction, _quantize_error, clip_weight
from utils.quantize import QuantNConv2d, QuantNLinear, QuantMeasure, QConv2d, QLinear, set_layer_bits
from utils.layer_transform import switch_layers, replace_op, restore_op, set_quant_minmax, merge_batchnorm, quantize_targ_layer#, LayerTransform
from modeling.classification.MobileNetV2 import mobilenet_v2
from modeling.segmentation.deeplab import DeepLab
from ZeroQ.distill_data import getDistilData
from improve_dfq import update_scale, transform_quant_layer, set_scale, update_quant_range, set_update_stat
def get_argument():
parser = argparse.ArgumentParser()
parser.add_argument("--quantize", action='store_true')
parser.add_argument("--equalize", action='store_true')
parser.add_argument("--distill_range", action='store_true')
parser.add_argument("--correction", action='store_true')
parser.add_argument("--relu", action='store_true')
parser.add_argument("--clip_weight", action='store_true')
parser.add_argument("--resnet", action='store_true')
parser.add_argument("--bits_weight", type=int, default=8)
parser.add_argument("--bits_activation", type=int, default=8)
parser.add_argument("--bits_bias", type=int, default=32)
parser.add_argument("--dis_batch_size", type=int, default=64)
parser.add_argument("--dis_num_batch", type=int, default=8)
parser.add_argument("--ncnn_build", type=str, default='/home/jakc4103/Documents/ncnn/build')
parser.add_argument("--image_path", type=str, default='/home/jakc4103/workspace/DFQ/cali_images/')
parser.add_argument("--param", type=str, default='modeling/ncnn/model_int8.param', help='filename of .param')
parser.add_argument("--bin", type=str, default='modeling/ncnn/model_int8.bin', help='filename of .bin')
parser.add_argument("--table", type=str, default='modeling/ncnn/model_int8.table', help='filename of .table')
return parser.parse_args()
class ProbModel(torch.nn.Module):
def __init__(self, model):
super(ProbModel, self).__init__()
self.model = model
def forward(self, x):
x = self.model(x)
x = torch.softmax(x, 1)
return x
def main():
args = get_argument()
# An instance of your model
if args.resnet:
import torchvision.models as models
model = models.resnet18(pretrained=True)
model = ProbModel(model)
else:
model = mobilenet_v2('modeling/classification/mobilenetv2_1.0-f2a8633.pth.tar')
model = ProbModel(model)
model.eval()
if args.quantize:
data = torch.ones((4, 3, 224, 224))#.cuda()
if args.distill_range:
import copy
# define FP32 model
model_original = copy.deepcopy(model)
model_original.eval()
transformer = TorchTransformer()
transformer._build_graph(model_original, data, [QuantMeasure])
graph = transformer.log.getGraph()
bottoms = transformer.log.getBottoms()
data_distill = getDistilData(model_original, 'imagenet', args.dis_batch_size, bn_merged=False,\
num_batch=args.dis_num_batch, gpu=True, value_range=[-2.11790393, 2.64], size=[224, 224], early_break_factor=1.2 if args.resnet else 0.5)
transformer = TorchTransformer()
module_dict = {}
if args.distill_range:
module_dict[1] = [(torch.nn.Conv2d, QConv2d), (torch.nn.Linear, QLinear)]
else:
module_dict[1] = [(torch.nn.Conv2d, QuantNConv2d), (torch.nn.Linear, QuantNLinear)]
if args.relu or args.equalize:
module_dict[0] = [(torch.nn.ReLU6, torch.nn.ReLU)]
# transformer.summary(model, data)
# transformer.visualize(model, data, 'graph_cls', graph_size=120)
model, transformer = switch_layers(model, transformer, data, module_dict, ignore_layer=[QuantMeasure], quant_op=True)
graph = transformer.log.getGraph()
bottoms = transformer.log.getBottoms()
if args.distill_range:
targ_layer = [QConv2d, QLinear]
else:
targ_layer = [QuantNConv2d, QuantNLinear]
set_layer_bits(graph, args.bits_weight, args.bits_activation, args.bits_bias, targ_layer)
model = merge_batchnorm(model, graph, bottoms, targ_layer)
#create relations
if args.equalize or args.distill_range:
res = create_relation(graph, bottoms, targ_layer, delete_single=False)
if args.equalize:
cross_layer_equalization(graph, res, targ_layer, visualize_state=False, converge_thres=2e-7, signed=True)
if args.clip_weight:
clip_weight(graph, range_clip=[-15, 15], targ_type=targ_layer)
if args.correction:
bias_correction(graph, bottoms, targ_layer, bits_weight=args.bits_weight, signed=True)
if args.distill_range:
set_update_stat(model, [QuantMeasure], True)
model = update_quant_range(model.cuda(), data_distill, graph, bottoms)
set_update_stat(model, [QuantMeasure], False)
else:
set_quant_minmax(graph, bottoms)
torch.cuda.empty_cache()
# restore custom conv layer to torch.nn.conv2d
module_dict = {}
if args.distill_range:
module_dict[1] = [(QConv2d, torch.nn.Conv2d), (QLinear, torch.nn.Linear)]
else:
module_dict[1] = [(QuantNConv2d, torch.nn.Conv2d), (QuantNLinear, torch.nn.Linear)]
model, transformer = switch_layers(model, transformer, data, module_dict, ignore_layer=[QuantMeasure], quant_op=False)
graph = transformer.log.getGraph()
bottoms = transformer.log.getBottoms()
# An example input you would normally provide to your model's forward() method
x = torch.rand(1, 3, 224, 224)
# Export the onnx model
torch_out = torch.onnx._export(model, x, "model.onnx", export_params=True)
# Simplify model using onnx-simplifier
os.system("python3 -m onnxsim model.onnx model-sim.onnx")
os.system("rm model.onnx")
cur_path = os.path.abspath(os.getcwd())
os.system("mv model-sim.onnx {}".format(os.path.join(args.ncnn_build, 'tools/onnx', 'model-sim.onnx')))
os.chdir(os.path.join(args.ncnn_build, 'tools/onnx'))
# Convert onnx to ncnn
os.system("./onnx2ncnn model-sim.onnx model.param model.bin")
# Add input image size to .param
lines = [line.strip() for line in open("model.param", "r")]
with open("model.param", 'w') as ww:
for idx, line in enumerate(lines):
if idx == 2 and 'input' in line.lower():
line += ' 0=224 1=224 2=3'
ww.write(line+'\n')
if not os.path.exists(os.path.join(cur_path, 'modeling/ncnn')):
os.makedirs(os.path.join(cur_path, 'modeling/ncnn'))
os.system("rm model-sim.onnx")
if args.quantize:
os.system("mv model.param {}".format(os.path.join(args.ncnn_build, 'tools/quantize', 'model.param')))
os.system("mv model.bin {}".format(os.path.join(args.ncnn_build, 'tools/quantize', 'model.bin')))
os.chdir(os.path.join(args.ncnn_build, 'tools/quantize'))
# Estimate activation range using https://github.com/Tencent/ncnn/tree/master/tools/quantize
os.system("./ncnn2table --param=model.param --bin=model.bin\
--images={} --output=model_int8_channel.table\
--mean={},{},{} --norm={},{},{} --size=224,224 --thread=2".format(
args.image_path, 0.485*255, 0.456*255, 0.406*255, 1/(0.229*255), 1/(0.224*255), 1/(0.225*255)))
# modify activation min/max range and weight min/max range to values calculated in DFQ
table_old = [line.strip() for line in open("model_int8_channel.table", 'r')]
table_new = []
count = 0
for ii in range(2):
for idx in graph:
if type(graph[idx]) in [torch.nn.Conv2d, torch.nn.Linear]:
if ii == 0:#min/max for layer weight
mi = float(torch.min(graph[idx].weight))
ma = float(torch.max(graph[idx].weight))
else:
mi = float(torch.min(graph[idx].quant.running_min))
ma = float(torch.max(graph[idx].quant.running_max))
scale = 128. / (max(abs(ma), abs(mi)))
if ii == 0:#min/max for activation
table_new.append(' '.join(table_old[count].split(' ')[0:1] + [str(scale)] * graph[idx].weight.shape[0]))
else:
table_new.append(' '.join(table_old[count].split(' ')[0:1] + [str(scale)]))
count += 1
with open("model_int8_tensor.table", 'w') as ww:
for line in table_new:
ww.write(line+'\n')
# Convert to Int8 model
os.system("./ncnn2int8 model.param model.bin model_int8.param model_int8.bin model_int8_tensor.table")
lines = [line.strip() for line in open("model_int8.param", "r")]
os.system("cp model_int8.param {}".format(os.path.join(cur_path, args.param)))
os.system("cp model_int8.bin {}".format(os.path.join(cur_path, args.bin)))
os.system("cp model_int8_tensor.table {}".format(os.path.join(cur_path, args.table)))
else:
os.system("mv model.param {}".format(os.path.join(cur_path, args.param)))
os.system("mv model.bin {}".format(os.path.join(cur_path, args.bin)))
os.chdir(cur_path)
line = ' '.join([l.strip() for l in open(args.param, 'r')][-1].split()).split(' ')[1]
print("="*100)
print("Target layer name '{}'".format(line))
print("="*100)
if __name__ == '__main__':
main()