Skip to content

Latest commit

 

History

History
186 lines (136 loc) · 5.99 KB

README.md

File metadata and controls

186 lines (136 loc) · 5.99 KB

Tagger

This is the source code for the paper "Deep Semantic Role Labeling with Self-Attention".

Contents

Basics

Notice

The original code used in the paper is implemented using TensorFlow 1.0, which is obsolete now. We have re-implemented our methods using PyTorch, which is based on THUMT. The differences are as follows:

  • We only implement DeepAtt-FFN model
  • Model ensemble are currently not available

Please check the git history to use TensorFlow implementation.

Prerequisites

  • Python 3
  • PyTorch
  • TensorFlow-2.0 (CPU version)
  • GloVe embeddings and srlconll scripts

Walkthrough

Data

Training Data

We follow the same procedures described in the deep_srl repository to convert the CoNLL datasets. The GloVe embeddings and srlconll scripts can also be found in that link.

If you followed these procedures, you can find that the processed data has the following format:

2 My cats love hats . ||| B-A0 I-A0 B-V B-A1 O

The CoNLL datasets are not publicly available. We cannot provide these datasets.

Vocabulary

You can use the build_vocab.py script to generate vocabularies. The command is described as follows:

python tagger/scripts/build_vocab.py --limit LIMIT --lower TRAIN_FILE OUTPUT_DIR

where LIMIT specifies the vocabulary size. This command will create two vocabularies named vocab.txt and label.txt in the OUTPUT_DIR.

Training

Once you finished the procedures described above, you can start the training stage.

Preparing the validation script

An external validation script is required to enable the validation functionality. Here's the validation script we used to train an FFN model on the CoNLL-2005 dataset. Please make sure that the validation script can run properly.

#!/usr/bin/env bash
SRLPATH=/PATH/TO/SRLCONLL
TAGGERPATH=/PATH/TO/TAGGER
DATAPATH=/PATH/TO/DATA
EMBPATH=/PATH/TO/GLOVE_EMBEDDING
DEVICE=0

export PYTHONPATH=$TAGGERPATH:$PYTHONPATH
export PERL5LIB="$SRLPATH/lib:$PERL5LIB"
export PATH="$SRLPATH/bin:$PATH"

python $TAGGERPATH/tagger/bin/predictor.py \
  --input $DATAPATH/conll05.devel.txt \
  --checkpoint train \
  --model deepatt \
  --vocab $DATAPATH/deep_srl/word_dict $DATAPATH/deep_srl/label_dict \
  --parameters=device=$DEVICE,embedding=$EMBPATH/glove.6B.100d.txt \
  --output tmp.txt

python $TAGGERPATH/tagger/scripts/convert_to_conll.py tmp.txt $DATAPATH/conll05.devel.props.gold.txt output
perl $SRLPATH/bin/srl-eval.pl $DATAPATH/conll05.devel.props.* output

Training command

The command below is what we used to train a model on the CoNLL-2005 dataset. The content of run.sh is described in the above section.

#!/usr/bin/env bash
SRLPATH=/PATH/TO/SRLCONLL
TAGGERPATH=/PATH/TO/TAGGER
DATAPATH=/PATH/TO/DATA
EMBPATH=/PATH/TO/GLOVE_EMBEDDING
DEVICE=[0]

export PYTHONPATH=$TAGGERPATH:$PYTHONPATH
export PERL5LIB="$SRLPATH/lib:$PERL5LIB"
export PATH="$SRLPATH/bin:$PATH"

python $TAGGERPATH/tagger/bin/trainer.py \
  --model deepatt \
  --input $DATAPATH/conll05.train.txt \
  --output train \
  --vocabulary $DATAPATH/deep_srl/word_dict $DATAPATH/deep_srl/label_dict \
  --parameters="save_summary=false,feature_size=100,hidden_size=200,filter_size=800,"`
               `"residual_dropout=0.2,num_hidden_layers=10,attention_dropout=0.1,"`
               `"relu_dropout=0.1,batch_size=4096,optimizer=adadelta,initializer=orthogonal,"`
               `"initializer_gain=1.0,train_steps=600000,"`
               `"learning_rate_schedule=piecewise_constant_decay,"`
               `"learning_rate_values=[1.0,0.5,0.25,],"`
               `"learning_rate_boundaries=[400000,50000],device_list=$DEVICE,"`
               `"clip_grad_norm=1.0,embedding=$EMBPATH/glove.6B.100d.txt,script=run.sh"

Decoding

The following is the command used to generate outputs:

#!/usr/bin/env bash
SRLPATH=/PATH/TO/SRLCONLL
TAGGERPATH=/PATH/TO/TAGGER
DATAPATH=/PATH/TO/DATA
EMBPATH=/PATH/TO/GLOVE_EMBEDDING
DEVICE=0

python $TAGGERPATH/tagger/bin/predictor.py \
  --input $DATAPATH/conll05.test.wsj.txt \
  --checkpoint train/best \
  --model deepatt \
  --vocab $DATAPATH/deep_srl/word_dict $DATAPATH/deep_srl/label_dict \
  --parameters=device=$DEVICE,embedding=$EMBPATH/glove.6B.100d.txt \
  --output tmp.txt

Benchmarks

We've performed 4 runs on CoNLL-05 datasets. The results are shown below.

Runs Dev-P Dev-R Dev-F1 WSJ-P WSJ-R WSJ-F1 BROWN-P BROWN-R BROWN-F1
Paper 82.6 83.6 83.1 84.5 85.2 84.8 73.5 74.6 74.1
Run0 82.9 83.7 83.3 84.6 85.0 84.8 73.5 74.0 73.8
Run1 82.3 83.4 82.9 84.4 85.3 84.8 72.5 73.9 73.2
Run2 82.7 83.6 83.2 84.8 85.4 85.1 73.2 73.9 73.6
Run3 82.3 83.6 82.9 84.3 84.9 84.6 72.3 73.6 72.9

Pretrained Models

The pretrained models of TensorFlow implementation can be downloaded at Google Drive.

LICENSE

BSD

Citation

If you use our codes, please cite our paper:

@inproceedings{tan2018deep,
  title = {Deep Semantic Role Labeling with Self-Attention},
  author = {Tan, Zhixing and Wang, Mingxuan and Xie, Jun and Chen, Yidong and Shi, Xiaodong},
  booktitle = {AAAI Conference on Artificial Intelligence},
  year = {2018}
}

Contact

This code is written by Zhixing Tan. If you have any problems, feel free to send an email.