forked from zhangjing1589/noncoding
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path20181215 重复数据.R
1241 lines (826 loc) · 36.2 KB
/
20181215 重复数据.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
###删除maf函数(将突变位点的1kg AF值大于指定值的位点删除)
#mutation_file format chr /t start /t end /t ....
rm_maf <- function(threshold, mutation_file)
{
system("perl extract_1kg_AF.pl")
system("mv result.tsv 1kg_integrated_phase1_v3_AF.tsv")
vcf_af <- fread("1kg_integrated_phase1_v3_AF.tsv", sep = "\t", colClasses=list(character= 1), showProgress = F, data.table = F)
###获取AF大于设定阈值位点
more_thres <- vcf_af[vcf_af$V6 >= threshold, ]
pos_index <- paste(paste("chr", more_thres$V1, sep = ""), more_thres$V2, sep = ":")
mut <- fread(mutation_file)
mut_index <- paste(mut$V1, mut$V3, sep = ":")
common_pos <- intersect(pos_index, mut_index)
rm_snp_mut <- mut[!mut_index %in% common_pos,]
write.table(rm_snp_mut, paste("rmSNP", mutation_file, sep = "_"), sep = "\t", row.names = F, col.names = F,quote = F)
file.remove("1kg_integrated_phase1_v3_AF.tsv")
}
###求两个区间的交集
# file1, file2 format chr /t start /t end /t ....
get_intersect_region <- function(file1, file2, file_result)
{
temp1 <- paste("sorted_", file1, sep = "")
temp2 <- paste("sorted_", file2, sep = "")
cmd1 <- paste("sort -k 1,1 -k 2,2n ",file1," > ",temp1, sep = "")
cmd2 <- paste("sort -k 1,1 -k 2,2n ",file2," > ",temp2, sep = "")
system(cmd1)
system(cmd2)
cmd3 <- paste("bedtools intersect -a ",temp1," -b ",temp2," -sorted > ",file_result, sep = "")
system(cmd3)
file.remove(temp1, temp2)
}
###获取指定区间的突变
#mutation_file format chr /t start /t end /t ....
#region_file format chr /t start /t end /t ....
region_mut <- function(mutation_file, region_file, result_file)
{
temp1 <- paste("sorted_", mutation_file, sep = "")
temp2 <- paste("sorted_", region_file, sep = "")
cmd1 <- paste("sort -k 1,1 -k 2,2n ",mutation_file," > ",temp1, sep = "")
cmd2 <- paste("sort -k 1,1 -k 2,2n ",region_file," > ",temp2, sep = "")
system(cmd1)
system(cmd2)
cmd3 <- paste("bedtools intersect -a ",temp1," -b ",temp2," -sorted > ",result_file, sep = "")
system(cmd3)
file.remove(temp1, temp2)
}
###获取bed格式的基因组位点信息
#pos_file format chr /t start /t end /t ....
#reference_genome_file
pos_fasta <- function(pos_file, ref_genome, result_file)
{
temp1 <- paste("sorted_", pos_file, sep = "")
cmd1 <- paste("sort -k 1,1 -k 2,2n ",pos_file," > ",temp1, sep = "")
system(cmd1)
cmd2 <- paste("bedtools getfasta -fi ",ref_genome," -bed ",temp1," -tab -bedOut > ",result_file, sep = "")
system(cmd2)
file.remove(temp1)
}
###获取bed格式文件的注释文件(bed)信息
#pos_file format chr /t start /t end /t ....
#anno_file format chr /t start /t end /t ....
pos_anno <- function(pos_file, anno_file, result_file)
{
temp1 <- paste("sorted_", pos_file, sep = "")
temp2 <- paste("sorted_", anno_file, sep = "")
cmd1 <- paste("sort -k 1,1 -k 2,2n ",pos_file," > ",temp1, sep = "")
cmd2 <- paste("sort -k 1,1 -k 2,2n ",anno_file," > ",temp2, sep = "")
system(cmd1)
system(cmd2)
cmd3 <- paste("bedtools map -a ",temp1," -b ",temp2," -c 4 -o mean > ",result_file, sep = "")
system(cmd3)
file.remove(temp1, temp2)
}
###获取bed格式文件的注释文件(bigwig)信息
#pos_file format chr /t start /t end /t ....
#anno_file format binary file
pos_anno <- function(pos_file, anno_file, result_file)
{
temp1 <- paste("sorted_", pos_file, sep = "")
cmd1 <- paste("sort -k 1,1 -k 2,2n ",pos_file," > ",temp1, sep = "")
system(cmd1)
bed <- fread(temp1)
bed <- bed[,1:3]
bed$index <- 1:dim(bed)[1]
write.table(bed, "pos_index", sep = "\t", row.names = F, quote = F, col.names = F)
cmd2 <- paste("./bigWigAverageOverBed ",anno_file," pos_index"," index_value", sep = "")
system(cmd2)
raw_pos <- fread(temp1)
bigwig_value <- fread("index_value")
index <- fread("pos_index")
result <- merge(index, bigwig_value, by.x = "V4", by.y = "V1")
raw_pos$value <- result$V5
write.table(raw_pos, result_file, sep = "\t", row.names = F, quote = F, col.names = F)
file.remove(temp1, "pos_index", "index_value")
}
###筛选需要的列
raw_mut_file <- "simple_somatic_mutation.open.tsv.gz"
vec_string1 <- c("zcat ", raw_mut_file, " | ",
"awk -F'\t' -vOFS='\t' '{print $1,$2,$3,$9,$10,$11,$12,$14,$15,$16,$17,$22,$26,$29,$30}' ",
"> extract_simple_somatic_mutation.open.tsv")
cmd1 <- paste(vec_string1, collapse = "")
system(cmd1)
###删除超过500,000突变的病例
threshold <- 500000
#Remove ultra-mutated donors' mutation data
system("awk -F'\t' -vOFS='\t' '{print $1,$2}' extract_simple_somatic_mutation.open.tsv > mutId_donor.tsv")
id_donor <- fread("mutId_donor.tsv", showProgress = F, data.table = F)
id_donor <- unique(id_donor)
donor_mutNum <- as.data.frame(table(id_donor$icgc_donor_id))
#get ultra-mutated donors' ID
ultra_mut_donor <- donor_mutNum[donor_mutNum[,2] > threshold, ]
ultra_donor <- as.character(ultra_mut_donor[,1])
vec_string2 <- c("sed '",
paste(paste("/",ultra_donor, "/d", sep = ""), collapse = ";"),
"' extract_simple_somatic_mutation.open.tsv > rmHyperMut_ext_ssm.open.tsv")
cmd2 <- paste(vec_string2, collapse = "")
system(cmd2)
###删除重复的行
system("awk -F'\t' -vOFS='\t' '{print $1,$2,$4,$5,$6,$7,$8,$9,$10,$11}' rmHyperMut_ext_ssm.open.tsv > sub_rmHyperMut_ext_ssm.tsv")
rm_redundant <- fread("sub_rmHyperMut_ext_ssm.tsv", sep = "\t", data.table = F)
all_point_mut <- unique(rm_redundant)
names(all_point_mut) <- c("mut_id","donor","chr","start","end","ref", "mut")
all_point_mut$chr <- paste("chr",all_point_mut$chr, sep = "")
fwrite(all_point_mut,"预处理所有突变.tsv", sep = "\t", row.names = F, quote = F)
###选取 "预处理所有突变.tsv" 文件中的单位点突变
mut <- fread("预处理所有突变.tsv", data.table = F)
pos_mut <- mut[mut$mut == "single base substitution",]
###以bed格式输出所有单碱基突变
mut_bed <- pos_mut[,c(3:5,2)]
mut_bed$start <- mut_bed$start - 1
write.table(mut_bed, "single_mut.bed", sep = "\t", row.names = F, quote = F, col.names = F)
###删除所有突变中的snp大于0.05的突变
rm_maf(0.05, "single_mut.bed")
file.remove("single_mut.bed")
#获取高拼接性区域
get_low_map_region <- function()
{
thres <- 1
system("./bigWigToBedGraph wgEncodeCrgMapabilityAlign24mer.bigWig wgEncodeCrgMapabilityAlign24mer.bedGraph")
mer100 <- fread("wgEncodeCrgMapabilityAlign24mer.bedGraph")
mer100_thres <- mer100[mer100$V4 == thres,]
write.table(mer100_thres,"high_map.bed", sep = "\t", row.names = F, quote = F, col.names = F)
file.remove("wgEncodeCrgMapabilityAlign24mer.bedGraph")
}
#获取CDS的外显子区域
get_cds_region <- function()
{
gtf <- fread("Homo_sapiens.GRCh37.75.gtf", skip = 5)
chr_index <- c(c(1:22),"X","Y")
gtf <- gtf[gtf$V1 %in% chr_index,]
gtf_exon <- gtf[gtf$V3 == "exon",]
cds <- gtf_exon[,c(1,4,5)]
cds$V1 <- paste("chr",as.character(cds$V1),sep = "")
write.table(cds,"cds_region.bed", sep = "\t", row.names = F, col.names = F, quote = F)
}
get_hyperimmu_region <- function()
{
###从Ensmbles gtf 文件 Homo_sapiens.GRCh37.75.gtf 中获取免疫高变区区间
immu_id <- c('IG_C_gene',
'IG_D_gene',
'IG_J_gene',
'IG_LV_gene',
'IG_V_gene',
'TR_C_gene',
'TR_J_gene',
'TR_V_gene',
'TR_D_gene',
'IG_pseudogene',
'IG_C_pseudogene',
'IG_J_pseudogene',
'IG_V_pseudogene',
'TR_V_pseudogene',
'TR_J_pseudogene')
gtf <- fread("Homo_sapiens.GRCh37.75.gtf", skip = 5)
chr_index <- c(c(1:22),"X","Y")
gtf <- gtf[gtf$V1 %in% chr_index,]
df_immu_region <- gtf[gtf$V2 %in% immu_id,]
bed_immu_region <- data.frame(df_immu_region$V1,df_immu_region$V4, df_immu_region$V5)
names(bed_immu_region) <- c("chr","start","end")
bed_immu_region$chr <- paste("chr",as.character(bed_immu_region$chr),sep = "")
write.table(bed_immu_region,"immu_region_from_gtf.bed", sep = "\t", row.names = F, col.names = F,quote = F)
###将免疫高变区merge
system("sort -k 1,1 -k 2,2n immu_region_from_gtf.bed > sort_chr_immu_region_from_gtf.bed")
system("bedtools merge -i sort_chr_immu_region_from_gtf.bed > merged_sort_chr_immu_region_from_gtf.bed")
###将免疫高变区前后扩增ext KB
ext = 50000
merged <- fread("merged_sort_chr_immu_region_from_gtf.bed")
merged$V2 <- merged$V2 - ext
merged$V3 <- merged$V3 + ext
write.table(merged,"extended_merged_sort_chr_immu_region_from_gtf.bed", sep = "\t", row.names = F ,col.names = F, quote = F)
###再次merge
system("sort -k 1,1 -k 2,2n extended_merged_sort_chr_immu_region_from_gtf.bed > sorted_extended_merged_sort_chr_immu_region_from_gtf.bed")
system("bedtools merge -i sorted_extended_merged_sort_chr_immu_region_from_gtf.bed > merged_sorted_extended_merged_sort_chr_immu_region_from_gtf.bed")
file.remove("sort_chr_immu_region_from_gtf.bed",
"merged_sort_chr_immu_region_from_gtf.bed",
"immu_region_from_gtf.bed",
"sorted_extended_merged_sort_chr_immu_region_from_gtf.bed",
"extended_merged_sort_chr_immu_region_from_gtf.bed")
}
###获取上面两个区域的并集区间
get_mask_region <- function()
{
cds <- fread("cds_region.bed")
#low_map <- fread("low_map.bed")[,1:3]
immu <- fread("merged_sorted_extended_merged_sort_chr_immu_region_from_gtf.bed")
result <- rbind(cds,immu)
write.table(result, "rbind_three.bed", sep = "\t", row.names = F, col.names = F, quote = F)
system("sort -k 1,1 -k 2,2n rbind_three.bed > sorted_rbind_three.bed")
system("bedtools merge -i sorted_rbind_three.bed > merged_sorted_rbind_three.bed")
file.remove("rbind_three.bed","sorted_rbind_three.bed")
}
###获取基因组上除去上述三个区间的剩下的非编码区间
get_nonmask_region <- function()
{
system("sort -k 1,1 -k 2,2n merged_sorted_rbind_three.bed > sorted_merged_sorted_rbind_three.bed")
system("sort -k 1,1 -k 2,2n human.hg19.genome > sorted_human.hg19.genome")
######获取全基因组mask区间的补集######
system("bedtools complement -i sorted_merged_sorted_rbind_three.bed -g sorted_human.hg19.genome > hg19_nonmask_region.bed")
######获取补集区间与高map区间的交集
get_intersect_region("hg19_nonmask_region.bed","high_map.bed","hg19_map_nonmask_region.bed")
file.remove("sorted_merged_sorted_rbind_three.bed","sorted_human.hg19.genome", "hg19_nonmask_region.bed")
}
###获取非编码区的所有体细胞突变
options(scipen = 30)
write.table(fread("rmSNP_single_mut.bed"),"rmSNP_single_mut.bed", sep = "\t", row.names = F, col.names = F, quote = F)
region_mut("rmSNP_single_mut.bed","hg19_map_nonmask_region.bed","noncoding_mut")
###随机获取基因组上50000000个位点
system("bedtools random -g human.hg19.genome -l 1 -n 50000000 > hg19_random_site.bed")
###获取非编码区的所有随机突变
region_mut("hg19_random_site.bed","hg19_map_nonmask_region.bed","noncoding_random_site.bed")
file.remove("hg19_random_site.bed")
###从非编码随机位点中将体细胞突变位点删除并将突细胞突变位点和随机位点合并
noncod_mut <- fread("noncoding_mut")
noncod_mut <- noncod_mut[noncod_mut$V1 != "chrY",]
noncod_site <- fread("noncoding_random_site.bed")[,1:3]
noncod_site$V4 <- "mock"
mut_index <- paste(noncod_mut$V1, noncod_mut$V3, sep = ":")
site_index <- paste(noncod_site$V1, noncod_site$V3, sep = ":")
common_pos <- intersect(mut_index, site_index)
noncod_site_rm_mut <- noncod_site[!site_index %in% common_pos, ]
noncod_site_rm_mut$index <- 0
noncod_mut$index <- 1
all_site <- rbind(noncod_mut, noncod_site_rm_mut)
write.table(all_site, "noncoding_mut_site.bed", sep = "\t", row.names = F, quote = F, col.names = F)
###获取 noncoding_mut_site.bed 文件的三碱基
single_site <- fread("noncoding_mut_site.bed")
single_site$V2 <- single_site$V2 - 1
single_site$V3 <- single_site$V3 + 1
write.table(single_site, "three_base.bed", sep = "\t", row.names = F, col.names = F, quote = F)
pos_fasta("three_base.bed","hg19.fasta","noncoding_three_base.bed")
file.remove("three_base.bed")
three_site <- fread("noncoding_three_base.bed")
three_site$V2 <- three_site$V2 + 1
three_site$V3 <- three_site$V3 - 1
three_site$V6 <- toupper(three_site$V6)
base_type <- fread("base.tsv")
merge_result <- merge(three_site, base_type, by.x = "V6", by.y = "V1")
result <- merge_result[,c(2:6,1,7)]
write.table(result, "noncoding_mut_site_3basetype.bed", sep = "\t", row.names = F, col.names = F, quote = F)
###获取复制时间值(chr start end value)
get_reptime <- function(path_to_rep_file)
{
setwd(path_to_rep_file)
system("./bigWigToWig wgEncodeUwRepliSeqBjWaveSignalRep1.bigWig BJ_reptime_wavesignal.wig")
system("./bigWigToWig wgEncodeUwRepliSeqGm06990WaveSignalRep1.bigWig GM06990_reptime_wavesignal.wig")
system("./bigWigToWig wgEncodeUwRepliSeqGm12801WaveSignalRep1.bigWig GM12801_reptime_wavesignal.wig")
system("./bigWigToWig wgEncodeUwRepliSeqGm12812WaveSignalRep1.bigWig GM12812_reptime_wavesignal.wig")
system("./bigWigToWig wgEncodeUwRepliSeqGm12813WaveSignalRep1.bigWig GM12813_reptime_wavesignal.wig")
system("./bigWigToWig wgEncodeUwRepliSeqGm12878WaveSignalRep1.bigWig GM12878_reptime_wavesignal.wig")
system("./bigWigToWig wgEncodeUwRepliSeqHelas3WaveSignalRep1.bigWig HelaS3_reptime_wavesignal.wig")
system("./bigWigToWig wgEncodeUwRepliSeqHepg2WaveSignalRep1.bigWig Hepg2_reptime_wavesignal.wig")
system("./bigWigToWig wgEncodeUwRepliSeqHuvecWaveSignalRep1.bigWig Huvec_reptime_wavesignal.wig")
system("./bigWigToWig wgEncodeUwRepliSeqImr90WaveSignalRep1.bigWig Imr90_reptime_wavesignal.wig")
system("./bigWigToWig wgEncodeUwRepliSeqK562WaveSignalRep1.bigWig K562_reptime_wavesignal.wig")
system("./bigWigToWig wgEncodeUwRepliSeqMcf7WaveSignalRep1.bigWig Mcf7_reptime_wavesignal.wig")
system("./bigWigToWig wgEncodeUwRepliSeqNhekWaveSignalRep1.bigWig Nhek_reptime_wavesignal.wig")
system("./bigWigToWig wgEncodeUwRepliSeqSknshWaveSignalRep1.bigWig Sknsh_reptime_wavesignal.wig")
dir.create("wigfile")
system("mv *.wig ./wigfile")
dir <- paste(path_to_rep_file, "/wigfile", sep = "")
setwd(dir)
file_names <- list.files()
file_anno <- vector("list", length = length(file_names))
names(file_anno) <- file_names
#function to get comment lines for each wig files
get_anno_line <- function(file_name)
{
con_file <- file(file_name, "r")
read_line <- readLines(con_file)
anno_line <- read_line[grep("fixedStep", read_line)]
close(con_file)
anno_line
}
#check if the divided reptime regions of all cell lines are identical
for(i in file_names) file_anno[[i]] <- get_anno_line(i)
is_identical <- T
for(i in 2:length(file_names))
{
if(!identical(file_anno[[i]] , file_anno[[1]]))
{
is_identical <- F
break
}
}
if(is_identical == T){
print("ALL replication time files are the same region")
}else{
print("ALL replication time files are not he same region")
}
#function to get the reptime for each wig file ,the output is bed format
get_bed_format <- function(wig_file)
{
read_file <- file(wig_file, "r")
read_lines <- readLines(read_file)
close(read_file)
#get the index of row of all "fixedStep" lines
fixedline_index <- grep("fixedStep", read_lines)
interval_end <- fixedline_index[2:length(fixedline_index)] - 1
interval_end <- c(interval_end, length(read_lines))
fixedline <- read_lines[fixedline_index]
bed_df_interval <- vector("list", length = length(fixedline_index))
names(bed_df_interval) <- fixedline
for(i in 1:length(fixedline))
{
chr = strsplit(strsplit(fixedline[i],"chrom=")[[1]][2]," ")[[1]][1]
start_pos <- strsplit(strsplit(fixedline[i],"start=")[[1]][2]," ")[[1]][1]
interval_val <- read_lines[(fixedline_index[i]+1):interval_end[i]]
row_num <- length(interval_val)
bed_start_pos <- seq(as.numeric(start_pos),by = 1000, length.out = row_num)
bed_end_pos <- bed_start_pos + 1000
bed_df_interval[[fixedline[i]]] <- data.frame(chr, bed_start_pos, bed_end_pos, interval_val)
}
names(bed_df_interval) <- NULL
unlist_bed <- list(rbindlist(bed_df_interval))
names(unlist_bed) <- wig_file
unlist_bed
}
#get bed format reptime for all wig files
bed_fomart_list <- lapply(file_names, get_bed_format)
#Check if all elments in bed format list are the same region
all_identical <- T
for(i in 2:length(bed_fomart_list))
{
if(!identical(bed_fomart_list[[i-1]][[1]][,1:3] , bed_fomart_list[[i]][[1]][,1:3]))
{
all_identical <- F
break
}
}
if(all_identical == T){
print("ALL file have the same format and region")
}else{
print("ALL file have not the same format and region")
}
#calculate average reptime for all celllines
val_mat <- matrix(nrow = dim(bed_fomart_list[[1]][[1]])[1], ncol = length(bed_fomart_list))
for(i in 1:length(bed_fomart_list))
val_mat[,i] <- as.numeric(as.character((bed_fomart_list[[i]][[1]]$interval_val)))
mean_vec <- apply(val_mat,1, mean)
###transform to bed format
average_rep_result <- data.frame( bed_fomart_list[[1]][[1]][,1:3], mean_vec)
names(average_rep_result) <- c("chr","start", "end", "rep_val")
write.table(average_rep_result, "average_reptime_14celllines.bed", sep = "\t", row.names = F, quote = F)
}
###获取 noncoding_mut_site_3basetype.bed 文件的复制时间
pos_anno("noncoding_mut_site_3basetype.bed","average_reptime_14celllines.bed","noncoding_mut_site_3basetype_reptime.bed")
rep_value <- fread("noncoding_mut_site_3basetype_reptime.bed")
rep_value <- rep_value[rep_value$V8 != ".",]
write.table(rep_value, "noncoding_mut_site_3basetype_reptime.bed", sep = "\t", row.names = F, quote = F, col.names = F)
###获取 noncoding_mut_site_3basetype_reptime.bed 文件的tfbs
tfbs <- fread("wgEncodeRegTfbsClusteredWithCellsV3.bed")
bed <- tfbs[,c(1:3,5)]
write.table(bed,"TFBS_value.bed", sep = "\t", col.names = F, row.names = F, quote = F)
pos_anno("noncoding_mut_site_3basetype_reptime.bed","TFBS_value.bed","noncoding_mut_site_3basetype_reptime_tfbs.bed")
tfbs_value <- fread("noncoding_mut_site_3basetype_reptime_tfbs.bed")
tfbs_value$V9[tfbs_value$V9 == "."] <- 0
write.table(tfbs_value, "noncoding_mut_site_3basetype_reptime_tfbs.bed", sep = "\t", row.names = F, quote = F, col.names = F)
###获取 noncoding_mut_site_3basetype_reptime_tfbs.bed 文件位点的保守性值
pos_anno("noncoding_mut_site_3basetype_reptime_tfbs.bed","hg19.100way.phastCons.bw","noncoding_mut_site_3basetype_reptime_tfbs_cons.bed")
###获取 noncoding_mut_site_3basetype_reptime_tfbs.bed 文件位点的GC含量(1kb)
system("sort -k 1,1 -k 2,2n hg19_gc1kb.bed > sorted_hg19_gc1kb.bed")
gc <- fread("sorted_hg19_gc1kb.bed")
gc <- gc[gc$V5!= ".",]
write.table(gc, "sorted_hg19_gc1kb.bed", sep = "\t", row.names = F, col.names = F, quote = F)
system("bedtools map -a noncoding_mut_site_3basetype_reptime_tfbs_cons.bed -b sorted_hg19_gc1kb.bed -c 5 -o mean > noncoding_mut_site_3basetype_reptime_tfbs_cons_gc.bed")
file.remove("sorted_hg19_gc1kb.bed")
###获取启动子区域并判断是否在启动子区
###选取-2500 到 +500 作为启动子区域
up_site = 2500
down_site = 500
##过滤数据
gtf_ensmble <- fread("Homo_sapiens.GRCh37.75.gtf", sep = "\t", colClasses=list(character= 1))
names(gtf_ensmble)[1] <- "V1"
ensmble_pro_cod <- gtf_ensmble[gtf_ensmble$V2 == "protein_coding",] #############选择仅仅是蛋白质编码的转录本
transcript_pro_cod_ensmble <- ensmble_pro_cod[ensmble_pro_cod$V3 == "transcript",] ##########从转录本中选取总的转录本区间
options(scipen=30)
chr_index <- c(c(1:22),"X","Y")
chr_trans_pro <- transcript_pro_cod_ensmble[transcript_pro_cod_ensmble$V1 %in% chr_index, ] #########仅仅挑选chr1:22 + X + Y 染色体
##从SST获取up_site到down_site的区间
pos_trans_chr_gtf <- chr_trans_pro[chr_trans_pro$V7 == "+",]
neg_trans_chr_gtf <- chr_trans_pro[chr_trans_pro$V7 == "-",]
pos_chr <- paste("chr",pos_trans_chr_gtf$V1, sep = "")
pos_start <- pos_trans_chr_gtf$V4 - up_site
pos_end <- pos_trans_chr_gtf$V4 + down_site
pos_bed <- data.frame(pos_chr, pos_start, pos_end)
names(pos_bed) <- c("chr","start","end")
neg_chr <- paste("chr",neg_trans_chr_gtf$V1, sep = "")
neg_start <- neg_trans_chr_gtf$V5 + up_site
neg_end <- neg_trans_chr_gtf$V5 - down_site
neg_bed <- data.frame(neg_chr, neg_end, neg_start)
names(neg_bed) <- c("chr","start","end")
promoter_region <- rbind(pos_bed, neg_bed)
promoter_region$index <- 1
write.table(promoter_region,"promoter_region.bed", sep = "\t", row.names = F, col.names = F,quote = F)
system("sort -k 1,1 -k 2,2n promoter_region.bed > sorted_promoter_region.bed")
system("bedtools map -a noncoding_mut_site_3basetype_reptime_tfbs_cons_gc.bed -b sorted_promoter_region.bed -c 4 -o mean > noncoding_mut_site_3basetype_reptime_tfbs_cons_gc_promoter.bed")
pro <- fread("noncoding_mut_site_3basetype_reptime_tfbs_cons_gc_promoter.bed")
pro$V12[pro$V12 == "."] <- "N"
pro$V12[pro$V12 == 1] <- "Y"
write.table(pro, "noncoding_mut_site_3basetype_reptime_tfbs_cons_gc_promoter.bed", sep = "\t", row.names = F, col.names = F, quote = F)
file.remove("promoter_region.bed","sorted_promoter_region.bed")
###判断突变是不是在CpG岛
cpg <- fread("CpG_island_UCSC.tsv")
chr <- c(1:22,"X", "Y")
chr <- paste("chr", chr, sep= "")
cpg <- cpg[cpg$chrom %in% chr,]
bed <- cpg[,2:4]
bed$index <- 1
write.table(bed,"cpg.bed", sep = "\t", row.names = F, quote = F, col.names = F)
system("sort -k 1,1 -k 2,2n cpg.bed > sorted_cpg.bed")
system("bedtools map -a noncoding_mut_site_3basetype_reptime_tfbs_cons_gc_promoter.bed -b sorted_cpg.bed -c 4 -o mean > noncoding_mut_site_3basetype_reptime_tfbs_cons_gc_promoter_cpg.bed")
cpg <- fread("noncoding_mut_site_3basetype_reptime_tfbs_cons_gc_promoter_cpg.bed")
cpg$V13[cpg$V13 == "."] <- "N"
cpg$V13[cpg$V13 == 1] <- "Y"
write.table(cpg, "noncoding_mut_site_3basetype_reptime_tfbs_cons_gc_promoter_cpg.bed", sep = "\t", row.names = F, quote = F, col.names = F)
file.remove("cpg.bed","sorted_cpg.bed")
system("mv noncoding_mut_site_3basetype_reptime_tfbs_cons_gc_promoter_cpg.bed genetic.bed")
###获取不同的组织的表观遗传注释
broadpeak2bed <- function()
{
files <- list.files()
files <- files[grep(".broadPeak", files)]
read_file <- vector("list", length = length(files))
names(read_file) <- files
for(i in files) read_file[[i]] <- fread(i)
for(i in files)
{
bed <- read_file[[i]][,c(1:3,7)]
write.table(bed, paste(i,"bed", sep = "."), sep = "\t", row.names = F, col.names = F, quote = F)
}
}
pos_anno <- function(pos_file, anno_file, result_file)
{
temp2 <- paste("sorted_", anno_file, sep = "")
cmd2 <- paste("sort -k 1,1 -k 2,2n ",anno_file," > ",temp2, sep = "")
system(cmd2)
cmd3 <- paste("bedtools map -a ",pos_file," -b ",temp2," -c 4 -o mean > ",result_file, sep = "")
system(cmd3)
file.remove(temp2)
}
library(stringr)
setwd("/home/zhangjing/roadmap/blood")
setwd("/home/zhangjing/roadmap/breast")
setwd("/home/zhangjing/roadmap/Esophagus")
setwd("/home/zhangjing/roadmap/Kidney")
setwd("/home/zhangjing/roadmap/liver")
setwd("/home/zhangjing/roadmap/lung")
setwd("/home/zhangjing/roadmap/Ovary")
setwd("/home/zhangjing/roadmap/Pancreas")
broadpeak2bed()
system("mkdir bed")
system("mv *.broadPeak.bed bed")
setwd("bed")
file_names <- list.files()
anno <- str_split_fixed(file_names, "[-|.]",4)[,2]
anno_file <- vector(length = length(file_names) + 1)
anno_file[1] <- "genetic.bed"
for(i in 1:length(file_names)) anno_file[i + 1] <- paste(anno_file[i], anno[i], sep = ".")
****mv genetic.bed to current direct
for(i in 1:length(file_names))
{
pos_anno(anno_file[i], file_names[i], anno_file[i+1])
}
result_file <- fread(anno_file[length(file_names) + 1])
names(result_file)[14: (13 + length(file_names))] <- anno
result_file[result_file == "."] <- 0
write.table(result_file,"final_result.tsv", sep = "\t", row.names = F, quote = F)
system("mv genetic.bed ..")
file.remove(anno_file)
######################################################## 多个数据
###melanoma
setwd("/home/zhangjing/roadmap/E059_Melanoma")
broadpeak2bed()
system("mkdir bed")
system("mv *.broadPeak.bed bed")
setwd("bed")
file_names <- list.files()
anno <- str_split_fixed(file_names, ".broadPeak.bed",4)[,1]
anno_file <- vector(length = length(file_names) + 1)
anno_file[1] <- "genetic.bed"
for(i in 1:length(file_names)) anno_file[i + 1] <- paste(anno_file[i], anno[i], sep = ".")
for(i in 1:length(file_names))
{
pos_anno(anno_file[i], file_names[i], anno_file[i+1])
}
result_file <- fread(anno_file[length(file_names) + 1])
names(result_file)[14: (13 + length(file_names))] <- anno
result_file[result_file == "."] <- 0
write.table(result_file,"final_result.tsv", sep = "\t", row.names = F, quote = F)
system("mv genetic.bed ..")
file.remove(anno_file)
setwd("/home/zhangjing/roadmap/E061_Melanoma")
broadpeak2bed()
system("mkdir bed")
system("mv *.broadPeak.bed bed")
setwd("bed")
file_names <- list.files()
anno <- str_split_fixed(file_names, ".broadPeak.bed",4)[,1]
anno_file <- vector(length = length(file_names) + 1)
anno_file[1] <- "genetic.bed"
for(i in 1:length(file_names)) anno_file[i + 1] <- paste(anno_file[i], anno[i], sep = ".")
for(i in 1:length(file_names))
{
pos_anno(anno_file[i], file_names[i], anno_file[i+1])
}
result_file <- fread(anno_file[length(file_names) + 1])
names(result_file)[14: (13 + length(file_names))] <- anno
result_file[result_file == "."] <- 0
write.table(result_file,"final_result.tsv", sep = "\t", row.names = F, quote = F)
system("mv genetic.bed ..")
file.remove(anno_file)
install.packages("pROC")
install.packages("caret")
#十折交叉验证和ROC曲线
###肺癌
{
source("/home/zhangjing/paper/lasso/logit_function20181112.R")
setwd("/home/zhangjing/roadmap/lung/bed")
system("mv final_result.tsv cal_model_lung_final_result.tsv")
project <- c("LUSC-CN","LUSC-KR","mock")
lung_mut <- logit_form(project, "cal_model_lung_final_result.tsv")
###多重共线性检验
mt <- lung_mut[,c(8:11,14:19)]
x <- cor(mt)
kappa(x, exact = TRUE) # 8.947881
mt <- lung_mut[,c(8:11)]
x <- cor(mt)
kappa(x, exact = TRUE) # 3.16644
mt <- lung_mut[,c(14:19)]
x <- cor(mt)
kappa(x, exact = TRUE) # 5.184799
#检验数值类型
is.character(lung_mut[,7])
is.numeric(as.matrix(lung_mut[,c(8:11,14:19)]))
#整理格式及结果计算
lung_form <- lung_mut[,c(5,7:19)]
cross_val(lung_form,"lung_logit.RData") # 0.6850658
}
##食道癌
{
source("/home/zhangjing/paper/lasso/logit_function20181112.R")
setwd("/home/zhangjing/roadmap/Esophagus/bed")
system("mv final_result.tsv cal_model_esophagus_final_result.tsv")
project <- c("ESAD-UK","ESCA-CN","mock")
esophagus_mut <- logit_form(project, "cal_model_esophagus_final_result.tsv")
###多重共线性检验
mt <- esophagus_mut[,c(8:11,14:19)]
x <- cor(mt)
kappa(x, exact = TRUE) # 8.529881
mt <- esophagus_mut[,c(8:11)]
x <- cor(mt)
kappa(x, exact = TRUE) # 3.178326
mt <- esophagus_mut[,c(14:19)]
x <- cor(mt)
kappa(x, exact = TRUE) # 4.565268
#检验数值类型
is.character(esophagus_mut[,7])
is.numeric(as.matrix(esophagus_mut[,c(8:11,14:19)]))
#整理格式
esophagus_form <- esophagus_mut[,c(5,7:19)]
cross_val(esophagus_form,"esophagus_logit.RData")
}
####肝癌
{
source("/home/zhangjing/paper/lasso/logit_function20181112.R")
setwd("/home/zhangjing/roadmap/liver/bed")
system("mv final_result.tsv cal_model_liver_final_result.tsv")
project <- c("LIAD-FR", "LICA-CN", "LICA-FR", "LINC-JP", "LIRI-JP","mock")
liver_mut <- logit_form(project, "cal_model_liver_final_result.tsv")
###多重共线性检验
mult_validate(liver_mut) # 8.991961
#检验数据类型
type_validate(liver_mut)
#整理格式
liver_form <-format_trans(liver_mut)
cross_val(liver_form,"liver_logit.RData")
}
{#######乳腺癌
source("/home/zhangjing/paper/lasso/logit_function20181112.R")
setwd("/home/zhangjing/roadmap/breast/bed")
system("mv final_result.tsv cal_model_breast_final_result.tsv")
project <- c("BRCA-EU","BRCA-FR","BRCA-US","mock")
breast_mut <- logit_form(project, "cal_model_breast_final_result.tsv")
#添加dnase数据
a <- fread("E028-DNase.hotspot.broad.bed")[,-4]
write.table(a,"E028-DNase.hotspot.broad.bed", sep = "\t", row.names = F, quote = F, col.names = F)
add_res <- add_dnase(breast_mut, "E028-DNase.hotspot.broad.bed")
breast_mut <- add_res
###多重共线性检验
mult_validate(breast_mut)
#检验数据类型
type_validate(breast_mut)
#整理格式
breast_form <-format_trans(breast_mut)
cross_val(breast_form,"breast_logit.RData")
}
## 胰腺癌
{
source("/home/zhangjing/paper/lasso/logit_function20181112.R")
setwd("/home/zhangjing/roadmap/Pancreas/bed")
system("mv final_result.tsv cal_model_pancreas_final_result.tsv")
project <- c("PACA-AU","PACA-CA","PAEN-AU","PAEN-IT","mock")
pancreas_mut <- logit_form(project, "cal_model_pancreas_final_result.tsv")
#添加dnase数据
a <- fread("E098-DNase.hotspot.broad.bed")[,-4]
write.table(a,"E098-DNase.hotspot.broad.bed", sep = "\t", row.names = F, quote = F, col.names = F)
add_res <- add_dnase(pancreas_mut, "E098-DNase.hotspot.broad.bed")
pancreas_mut <- add_res
###多重共线性检验
mult_validate(pancreas_mut)
#检验数据类型
type_validate(pancreas_mut)
#整理格式
pancreas_form <-format_trans(pancreas_mut)
cross_val(pancreas_form,"pancreas_logit.RData")
}
###肾癌
{
source("/home/zhangjing/paper/lasso/logit_function20181112.R")
setwd("/home/zhangjing/roadmap/Kidney/bed")
system("mv final_result.tsv cal_model_kidney_final_result.tsv")
project <- c("RECA-EU","mock")
kidney_mut <- logit_form(project, "cal_model_kidney_final_result.tsv")
#添加dnase数据
a <- fread("E086-DNase.hotspot.broad.bed")[,-4]
write.table(a,"E086-DNase.hotspot.broad.bed", sep = "\t", row.names = F, quote = F, col.names = F)
add_res <- add_dnase(kidney_mut, "E086-DNase.hotspot.broad.bed")
kidney_mut <- add_res
###多重共线性检验
mult_validate(kidney_mut)
#检验数据类型
type_validate(kidney_mut)
#整理格式
kidney_form <- format_trans(kidney_mut)
# cross_val(kidney_form,"kidney_logit.RData") #AUC 0.626 不合格,优化
##调整 res ~ nbase + reptime + conser + cpg + H3K27me3 + H3K36me3 + H3K9me3
kidney_form1 <- kidney_form[,c(1,2,3,5,8,9,10,14)] ###使用该结果
cross_val(kidney_form1,"kidney1_logit.RData")
}
{####血癌
source("/home/zhangjing/paper/lasso/logit_function20181112.R")
setwd("/home/zhangjing/roadmap/blood/bed")
system("mv final_result.tsv cal_model_blood_final_result.tsv")
project <- c("ALL-US","CLLE-ES","MALY-DE","NKTL-SG","mock")
blood_mut <- logit_form(project, "cal_model_blood_final_result.tsv")
###多重共线性检验
mult_validate(blood_mut)
#检验数据类型
type_validate(blood_mut)
#整理格式
blood_form <-format_trans(blood_mut)
cross_val(blood_form,"blood_logit.RData")
}
###肝癌
{
source("/home/zhangjing/paper/lasso/logit_function20181112.R")
setwd("/home/zhangjing/roadmap/liver/bed")
system("mv final_result.tsv cal_model_liver_final_result.tsv")
project <- c("LIAD-FR", "LICA-CN", "LICA-FR", "LINC-JP", "LIRI-JP","mock")
liver_mut <- logit_form(project, "cal_model_liver_final_result.tsv")